Miksi sovittaisin eri menetelmillä kerätyt pistepilviaineistot yhdeksi pistepilveksi?

Suunnitteletko rakennuksen korjausrakentamista? Oletko törmännyt tilanteeseen, jossa pistepilviaineiston kerääminen eri menetelmiä yhdistämällä olisi ajallisesti kannattanut? Usein työltä vaaditaan tehokkuutta ja luotettavuutta, jotta hanke olisi kannattava. Tämä pätee myös ja erityisesti rakennuksen korjausrakentamisessa. Kustannukset nousevat kellon raksuttaessa, aikaa on rajallisesti ja mahdollisen myöhästymisen uhkasakot ahdistavat.

Jotta kerätyn pistepilviaineiston laatu ei kärsisi, on tärkeää tunnistaa, mikä menetelmä sopii parhaiten mihinkin tilanteeseen. Esimerkiksi Matterportin kamera on tehokas ja vaivaton tapa kerätä rakennuksen sisätiloista pistepilviaineistoa, mutta sen toimintaperiaate rajoittaa laitteen käyttöä ulkona. Rajoittavana tekijänä on auringonvalo, joka on samalla aaltopituudella kuin Matterport. Tästä syystä ulkotilat kannattaa täydentää pistepilveen laserkeilaimen avulla.

Miten laserkeilauksella ja Matterportin kameralla kerätyt pistepilvet voidaan yhdistää?

Laserkeilaimella ja Matterportin kameralla kerätyt pistepilvet voidaan yhdistää toisiinsa joko tähysten avulla tai pistepilvipohjaisesti. Tähyksinä voidaan käyttää Matterportin omia tähyksiä, jolloin tähykset auttavat suurien tilojen mallinnusta Matterportilla sekä pistepilvien yhdistämistä (Lisätietoa asiasta englanniksi Matterportin sivuilta). Tähykset tulee sijoitella mallinnusalueelle ennen kuin aloittaa aineiston keräämisen. Yhdistämisen varmistamiseksi täytyy molemmissa aineistoissa näkyä vähintään kolme (3) yhteistä tähystä.

Käytännössä yhdistäminen tapahtuu vasta toimistolla, kun molemmat aineistot ovat esikäsitelty. Matterport-pistepilvi ladataan MyMatterport-palvelimelta MatterPak-tiedostona, joka sisältää pistepilven lisäksi kolmioverkkomallin kohteesta. Laserkeilauksen pistepilvi täytyy myös esikäsitellä eli rekisteröidä erilliset laserkeilausasemat yhdeksi pistepilveksi. Tähyksillä yhdistäessä valittu pistepilviohjelmisto vaikuttaa aineistojen yhdistämiseen. Toisissa ohjelmistoissa joudut manuaalisesti näyttämään vastaavat tähykset aineistojen välillä, kun taas toisissa se voi onnistua automaattisesti. Tähysten osoituksen jälkeen saat tiedon kuinka tarkasti pistepilvet osuivat yhteen.

Toinen menetelmä pistepilvien yhdistämiselle on pistepilvipohjainen yhteensovitus. Tällöin on parasta, että molemmilla laitteilla kerätään aineistoa samalta alueelta. Tämän yhteisen alueen tulee olla vähintään 10 % koko pistepilviaineistosta. Lisäksi tarkempi tulos saadaan, jos päällekkäisyysalue ei ole vain yhdellä puolella rakennusta. Tämä vähentää pistepilvien välisiä kiertymiä (kuva 1).

 Jos ei ole tarkkana, voi vähäisellä päällekkäisyydellä pistepilvet kiertyä. Kaukaa rekisteröinti voi näyttää hyvältä, mutta läheltä katsottuna löytyy virheitä. Kuten kuvan vasemmalla olevasta ikkunasta voi havaita. Matterport 3D-kameran pistepilvi (ruskean sävyinen) on kiertynyt TX8-laserkeilaimen pistepilveen nähden (punasävyinen), kun yritetään yhteensovitusta näiden pistepilvien välillä.Kuva 1) Jos ei ole tarkkana, voi vähäisellä päällekkäisyydellä pistepilvet kiertyä. Kaukaa rekisteröinti voi näyttää hyvältä, mutta läheltä katsottuna löytyy virheitä. Kuten kuvan vasemmalla olevasta ikkunasta voi havaita. Matterport 3D-kameran pistepilvi (ruskean sävyinen) on kiertynyt TX8-laserkeilaimen pistepilveen nähden (punasävyinen), kun yritetään yhteensovitusta näiden pistepilvien välillä.

Pistepilvipohjaisella menetelmällä aineistot esikäsitellään samalla tavalla kuin aikaisemmin. Käyttämäsi pistepilviohjelmisto vaikuttaa yhdistämisen toteutukseen. Yhdistäminen voi onnistua joko näyttämällä pistepilvelle muutamia yhteisiä piirteitä tai manuaalisesti sovittamalla pistepilvet yhteen. Manuaalisen sovituksen jälkeen ohjelmistoissa on työkalu, joka toteuttaa automaattisesti tarkemman yhteensovituksen. Tämä antaa lopulta sovitukselle tarkkuuden.

Pistepilvipohjaisella menetelmällä aineistot esikäsitellään samalla tavalla kuin aikaisemmin. Käyttämäsi pistepilviohjelmisto vaikuttaa yhdistämisen toteutukseen. Yhdistäminen voi onnistua joko näyttämällä pistepilvelle muutamia yhteisiä piirteitä tai manuaalisesti sovittamalla pistepilvet yhteen. Manuaalisen sovituksen jälkeen ohjelmistoissa on työkalu, joka toteuttaa automaattisesti tarkemman yhteensovituksen. Tämä antaa lopulta sovitukselle tarkkuuden.

Luontokeskus Haltian pistepilviaineiston kerääminen Matterportin Pro2 3D-kameran, TrimbleTX8-laserkeilaimen sekä GeoSLAM ZEB-REVO RT-käsiskannerin avulla

Kohteenamme oli Suomen Luontokeskus Haltia Nuuksiossa. Sisätilat mallinsimme Matterportilla sekä kädessä kannettavalla GeoSLAM ZEB-REVO RT -laserkeilaimella. Sisätilan lisäksi laserkeilasimme ZEB-REVO RT:llä terassialueita. Noin puoli vuotta myöhemmin kävimme laserkeilaamassa Haltian ulkopuolen Trimble TX8 -laserkeilaimella. Tästä syystä emme voineet käyttää tähyksiä, joten yhdistäminen täytyi tehdä pistepilvipohjaisesti. Yhteensä pistepilvien tuottamiseen kului noin 14 h ja lopulliseen yhdistämiseen noin 1h.

Kuva 2) Aineisto kerättiin seuraavilla laitteilla; Matterport (vasemmalla), TX8 (keskellä) ja ZEB-REVO RT (oikealla).

Puolen vuoden tauon ja ihmispaljouden vuoksi keräsimme Matterportilla aineiston vain sisätiloista ja TX8:lla vain ulkona. Tästä syystä aineistojen välillä oli vain 3 % päällekkäisyys, joka muodostui ikkunoiden kautta tehdyistä TX8-laserkeilaimen havainnoista. Tämä ei kuitenkaan estänyt yhteensovitusta, koska olimme laserkeilanneet myös ZEB-REVO RT:llä. Sillä on päällekkäisiä havaintoja Matterportin kanssa 25 % ja 8 % TX8:n kanssa. Päätimme sovittaa ensimmäisenä Matterportin ZEB-REVO RT:n pistepilveen. Sen jälkeen sovitimme TX8:n pistepilven ZEB-REVO RT:n pistepilveen. Lopuksi yhdistimme Matterportin ja TX8 pienellä hienosäädöllä yhteen.

Pistepilviaineistojen sovittaminen yhdeksi pistepilveksi

Tällä kertaa käytimme Trimble RealWorks -ohjelmistoa ja sen pilvipohjaista yhdistämistyökalua. Ennen eri menetelmien pistepilvien yhdistämistä rekisteröimme TX8-aineistot yhdeksi pistepilveksi ja värjäsimme pistepilvet. Pistepilvet värjättiin laserkeilauksen kanssa samanaikaisesti otetuilla valokuvilla. Nämä kuvat yhdistettiin ensin panoraamakuviksi, jotka yhdistettiin keilausasemiin Trimblen RealWorks-ohjelmistossa. Värjäämisessä käytettiin RealColor-työkalua, jossa jokaiselle keilausasemalle valitaan vastaava panoraamakuva sen värjäämiseksi. Kun kaikki keilausasemat oli värjätty, rekisteröitiin ne yhdeksi pistepilveksi automaattisesti tasopintojen avulla. Rekisteröity pistepilvi tallennettiin omaksi tiedostoksi.

Laserkeilauksen rekisteröinnin jälkeen ladattiin muut aineistot RealWorks-ohjelmistoon. Kun kaikki aineistot oli ladattu samaan projektiin, aloitettiin aineistojen yhdistäminen. Trimble RealWorks:llä pistepilvipohjaisesti pistepilvien yhdistäminen on helppoa. Käyttäjän tulee valita projekti ja sen sisältä yhdistettävät pistepilvet, jonka jälkeen aktivoidaan pistepilvipohjainen rekisteröinti. Tämän jälkeen tarkistetaan, kumpi aineistoista on referenssinä eli kumpi aineistoista pysyy paikallaan. Sen jälkeen osoitetaan muutama yhteinen piste molemmista aineistoista (kuva 3). Näiden pisteiden avulla ohjelmisto yhdistää pistepilvet toisiinsa.

Kuva 3) Pistepilvipohjainen pistepilvien yhteensovitus vaatii käyttäjää osoittamaan yhteisiä pisteitä aineistoista.

Osoitettujen pisteiden jälkeen käytimme refine-työkalua, jolloin ohjelmisto automaattisesti parantaa yhteensovitusta. Kannattaa kuitenkin tarkastaa yhteensovituksen onnistuminen työkalun käytön jälkeen, koska vähäinen päällekkäisyys voi aiheuttaa virheellisiä tuloksia. Tästä syystä vaiheen voi jättää pois, jos automaatio ei osaa yhdistää pistepilviä oikein. Kun rekisteröinti on valmis, valitaan yhdistetäänkö pistepilvet yhdeksi pistepilveksi vai ei. Tässä tapauksessa, kun käytimme ZEB-REVO RT -laserkeilainta yhdistämisen apuna, emme halunneet yhdistää sen pistepilveä lopulliseen pistepilveen. Valitsimme ettei aineistoja yhdistetä ja aktivoimme pistepilvien uudet sijainnit. Tarkemmat sovituksen vaiheet voit tarkastella tästä videosta:

Matterportin ja ZEB-REVO RT:n välinen yhteensovitus onnistui 3,5 cm tarkkuudella. Tämän jälkeen yhteensovitettu TX8 ja ZEB-REVO RT onnistui 3,3 cm tarkkuudella. Näiden yhteensovitusten jälkeen avasimme vielä kerran pilvipohjaisen yhteensovituksen Matterportin ja TX8:n välille. Tällä kertaa tarkastelimme yhdistystä visuaalisesti ja aktivoimme pistepilvien yhdistämisen toisiinsa. Tarkkuudeksi pistepilvien välille saimme 3,3 cm. Tarkkuuden kohdalla tulee huomioida, kuinka pieni päällekkäisyys aineistoilla oli. Mitä pienempi pistepilvien päällekkäisyysalue on sitä vaikeampaa ja epätarkempaa niiden yhdistäminen on. Tässä tapauksessa, kun päällekkäisyys aineistojen välillä oli vain 3 %, tarkkuus on todella hyvä. 

Kuva 4) Lopullinen pistepilvi Haltiasta, jossa ulkotilat on mallinnettu TX8-laserkeilaimella ja sisätilat Matterport Pro 2 -kameralla.

Menetelmien yhdistämisen jälkeen Luontokeskus Haltian pistepilvi koostuu 47 miljoonasta pisteestä (kuva 4). Nyt aineisto kattaa suurimman osan sisä- ja ulkotiloista. Tätä voitaisiin täydentää vielä lisää sisätiloissa sekä katon osalta. Katosta voitaisiin kerätä aineisto dronen avulla ja se voitaisiin yhdistää samalla menetelmällä jo yhdistettyihin pistepilviin. 

Miksi eri menetelmillä kerätty pistepilviaineisto kannatti?

Menetelmien yhdistämisellä voidaan säästää aikaa ja rahaa sekä kattaa suurempia alueita. Säästöjen syynä on Matterportin nopeus verrattuna maalaserkeilaimeen sisätilojen mallintamisessa. Jos tila olisi mallinnettu pelkällä maalaserkeilaimella, olisi siihen kulunut huomattavasti enemmän aikaa. Tästä syystä aineistojen yhdistäminen GeoSLAM ZEB-REVO RT -laserkeilaimen avulla nopeutti tuotantoa. ZEB-REVOn kannettavuuden ansiosta mitattiin muutamassa minuutissa tarvittava päällekkäisaineisto, jolla Matterportin sisätilojen ja TX8:n ulkotilojen pistepilvet yhdistettiin.

Toisaalta laserkeilain mahdollistaa Matterport-pistepilvien sitomisen muuhun ympäristöön. Lisäksi eri menetelmillä ei välttämättä saa kerätyksi aineistoa kaikista kohdista, kuten katolta. Tästä syystä on kannattavaa yhdistää menetelmiä, joten pistepilvet ovat kattavampia ja täten hyödyllisempiä.  

Lopulta epäoptimaalisista lähtökohdista (ei tähyksiä ja vähäinen päällekkäisyys pistepilvien välillä) huolimatta on mahdollista yhdistää eri menetelmien pistepilviä. Yhdistäminen on mahdollista jopa 3 % päällekkäisyydellä, jos apuna voidaan käyttää kattavampaa aineistoa.

Mikäli innostuit kokeilemaan aineistojen yhdistämistä, suosittelemme keräämään aineiston joko yli 10 % päällekkäisyydellä tai vähintään kolmea tähystä käyttäen. Kerää aineistolle mahdollisimman paljon yhteisiä piirteitä esimerkiksi avaamalla ikkunoita tai ovia eri puolilta rakennusta ja muista pitää yhteys muuttumattomana eri menetelmien käytön aikana.    

Kirjoittaja

Aino Keitaanniemi, DI

Milloin viimeksi lasermittalaitteesi on huollettu tai kalibroitu?

Rakennuspöly, kosteus ja haastavat työmaaolosuhteet voivat ajan myötä vaikuttaa lasermittalaitteiden toimintakykyyn ja tarkkuuteen. Mittausvirheet työmailla tulevat kalliiksi, joten laitteet on hyvä pitää kunnossa säännöllisellä kalibroinnilla ja huollolla. Rakennuslaserit on suositeltava kalibroida vähintään kerran vuodessa.

Kaatunut tai kolhiintunut laite voi ulkoisesti näyttää moitteettomalta, mutta kaatuminen ja pienet kolhut voivat vaikuttaa laserin tarkkuuteen. Kun vaaditaan millimetrien tarkkuutta ja jatkuvaa toimintavarmuutta, laitteet on tarkistettava säännöllisesti ja pidettävä kunnossa.

Geotrim on Spectra-lasereiden valtuutettu huolto Suomessa ja oma paikallinen huoltomme sijaitsee Vantaan Aviapoliksessa, lähellä Helsingin lentokenttää. Kalibrointiin sisältyy toimintojen tarkastus, tarkkuuden säätö ja virallinen kalibrointitodistus. Kalibroinnin yhteydessä tarkistamme, tarvitseeko koje huoltoa tai osien vaihtoa.

Huoltomme on Trimblen valtuuttama, korkeimman luokan täyden palvelun huolto. Tarvittaessa saat meiltä vuokralaitteen huollon ajaksi. Jos sinulla on kysyttävää huollosta tai tuotteistamme, autamme mielellämme.

>Myynnin yhteystiedot

Mikä erottaa laserkeilaimen syvyyskamerasta?

Ympäristöämme voidaan mallintaa kolmiulotteisesti useilla eri menetelmillä esimerkiksi laserkeilaimilla ja syvyyskameroilla. Nämä laitteet tuottavat pistepilviä, jotka muodostuvat useista pistemäisistä havainnoista, eli pisteistä, kolmiulotteisessa avaruudessa. Näitä pisteitä voi olla miljoonia, jolloin ne muodostavat yhdessä 3D-muotoja. Vaikka lopputuloksien pistepilvet soveltuvat moniin tarkoituksiin, vaikuttaa sen tuottamiseen käytetty laite sen käyttötarkoitukseen. Tarkastellaan seuraavaksi yhden laserkeilaimen ja yhden syvyyskameran toimintaa. Laserkeilaimena on GeoSLAM ZEB-REVO RT ja syvyyskamerana Matterport Pro2 3D-kamera.

Laserkeilaimet kuten ZEB-REVO RT tuottavat pistepilviä laservalon avulla. Ne lähettävät laservaloa tietyllä aallonpituudella, joka kohteeseen osuessaan heijastuu takaisin. Tästä yksinkertaistettu piirros kuvassa 1. Laserkeilain havaitsee takaisin heijastuneen laservalon ja muodostaa 3D-etäisyyshavainnon eli pisteen. Tämän pisteen sijainnin laserkeilain voi laskea esimerkiksi laservalon etenemiseen kuluneen ajan ja sen lähtösuunnan pohjalta. Näistä heijastumista muodostuvista pisteistä muodostuu lopulta pistepilvi.

Kuva 1. ZEB-REVO RT lähettää ja vastaanottaa laservaloa, jota kuvassa punaiset kaksipäiset nuolet esittävät. Samalla itse laite pyörii vihreän nuolen mukaiseen suuntaan.

Kattavimman laserkeilauspistepilven saa, kun kerää havaintoja kohteesta useista suunnista. Tällöin ei yksikään nurkka jää mallintamatta. Tämä on tehty tehokkaaksi ZEB-REVO RT laserkeilaimessa, koska sen kanssa voi kävellä ympäri kohdetta mittauksen aikana. Tästä syystä sillä aineiston kerääminen on huomattavasti nopeampaa kuin muilla 3D-mallinnusmenetelmillä. Laserkeilattuun pistepilveä voidaan vapaasti muokata jälkilaskennassa esimerkiksi värjäämällä aineisto osittaisesti havainnointihetken kuvilla tai vain harmaasävyillä.

Miten Matterport Pro 2 3D-kamera eroaa tästä? Matterport lähettää myös valoa tarkemmin sanottuna infrapuna-aallonpituudella, joka muodostaa kohteen pinnalle tunnetun muotoisen kuvion. Tätä ei paljaalla silmällä erota, mutta laitteen kamera ja tarkoitukseen suunniteltu sensori havaitsevat sen. Kohteeseen osuessaan valokuvio mukautuu kohteen pinnan mukaisesti, joten laite kykenee kuvion havaintojen pohjalta muodostamaan pistehavintoja. Nämä pistehavainnot muodostavat lopulta pistepilven. Kuvassa 2 on yksinkertaistettu piirros kohteeseen heijastetusta kuviosta.

Kuva 2. Punaiset katkoviivat kuvastavat lähetettyä valokuviota, jota Matterport Pro 2 3D-kamera havainnoi sensorilla ja kameralla (oranssit katkoviivat).

Matterport Pro 2 3D-kameralla saa kattavan pistepilven helposti siirtämällä laitetta aina muutaman metrin päähän edellisestä kuvauspaikasta. Tämä on helppoa, koska laitetta ohjataan tabletilta ja samalla voidaan tarkastella aineiston kattavuutta. Laite tuottaa myös tehokkaasti värillisen mallin kohteesta Matterportin pilvipalveluun, josta mallin voi ladata muutamassa formaatissa pientä kustannusta vastaan omalle koneelle.

Fyysisen toimintaperiaatteen lisäksi tärkein ero näiden laitteiden välillä on niiden soveltuvuus eri käyttötarkoituksiin. ZEB-REVO RT:llä voidaan kerätä minuuteissa kattavaa aineistoa sekä sisätiloista, maan alta että ulkoa. Matterport ei tästä jää kauas, koska sillä voidaan kerätä aineistoa sekä sisätiloissa että maan alla. Ulkona aineiston kerääminen Matterportilla on hankalaa, koska lähetetty valokuvio on auringon valon kanssa samalla aallonpituudella. Ulkona mittaaminen on kuitenkin mahdollista auringonlaskun jälkeen. Mittauksen nopeuteen vaikuttaa myös laitteen mittausetäisyys, koska lyhyellä mittausetäisyydellä (alle 10 m) täytyy kerätä aineistoa useammasta paikasta, jotta saadaan tarpeeksi havaintoja. Käyttötarkoituksen mukaan on myös tärkeää valita laite, jonka mittausmenetelmällä saavutetaan toivottu lopputuloksen tarkkuus. Seuraavassa taulukossa 1 ovat molempien laitteiden tarkkuudet, aallonpituudet ja mittausetäisyydet, jotka määrittävät edellä mainituilla tavoilla laitteiden soveltuvuutta eri käyttötarkoituksiin.

Taulukko 1. Laitteiden ominaisuudet.

Tarkastellaan menetelmien eroja samasta kohteesta kerätyn aineiston avulla. Kävimme keräämässä aineistoa Temppeliaukion kirkosta molemmilla laitteilla. Taulukossa 2 näkyy, kuinka nämä menetelmät eroavat toisistaan käytössä. ZEB-REVO RT on huomattavasti nopeampi menetelmä aineiston keruussa, koska laitteen kanssa voi kävellä samalla kun se laserkeilaa. Pistepilven koko on myös isompi ZEB-REVO RT:llä, mutta pistepilven koko vaihtelee aina kohteen mukaan. Lisäksi Matterportin automaattinen pilvilaskenta poistaa Matterportin  pistepilvestä kohinan, mutta laserkeilaimen pistepilvessä kohinaa ei ole poistettu.

Valmiin pistepilven saaminen eroaa laitteiden välillä, koska Matterport toteuttaa pistepilven automaattisesti ja laserkeilain vaatii käyttäjän apua. Matterportin kohdalla käyttäjä lataa aineiston tabletilta Matterportin pilvipalveluun ja palvelu aloittaa automaattisen prosessoinnin. Kun prosessointi on valmis, lähettää palvelu siitä tiedon sähköpostilla käyttäjälle. Viimeisenä vaiheena käyttäjän tulee kirjautua pilvipalveluun ja ladata MatterPak-tiedosto, joka sisältää pistepilven värillisenä xyz-formaatissa.

ZEB-REVO RT:n valmiin pistepilven saaminen eroaa Matterportin automatisoidusta pistepilven prosessoinnista. Prosessointi alkaa, kun käyttäjä lataa laserkeilaimesta kerätyn aineiston tietokoneelle. Tämä ladattu aineisto avataan GeoSLAM Hub -ohjelmistossa, jossa käyttäjä voi halutessaan vaikuttaa pistepilven prosessointiasetuksiin. Tämä ei kuitenkaan ole pakollista, koska ohjelmiston olettamat asetukset toimivat hyvin erilaisilla aineistoilla. Kun asetukset on valittu, aloittaa ohjelmisto pistepilven automaattisen prosessoinnin. Valmiin prosessoinnin jälkeen, käyttäjä voi tarkastella pistepilveä ohjelmistossa ja tallentaa sen valitsemassaan formaatissa. Lopullisen pistepilven tuottaminen riippuu aina kohteesta, mutta normaalisti prosessoinnissa kuluu yhtä kauan kuin aineiston keruussa. Tällä kertaa kuitenkin teimme muutamia siistimisiä pistepilvelle kuten ikkunoiden heijastumien ja aloituksesta syntyvien mittaaja havaintojen poiston.

Taulukko 2 Menetelmien erot mittaustilanteessa.

Kuvaparissa 3 on kuvat molempien menetelmien pistepilvistä. Kuten näistä pistepilvistä havaitaan, eivät menetelmät eroa paljoakaan lopputulokseltaan. Suurin ero on se, että ZEB-REVO RT:n pistepilvi ei ole väritetty mittaushetken väreillä vaan laitteen luomilla harmaasävyillä.

Kuva 3. Temppeliaukion kirkon alttari pistepilvinä sekä Matterport Pro 2 3D-kameralla että ZEB-REVO RT laserkeilaimella.

Eroavista menetelmistään huolimatta molemmille laitteille löytyy käyttötilanteensa. Matterport on tehty käyttäjäystävälliseksi helpon käyttöliittymän ja automaattisen värjätyn pistepilven prosessoinnin avulla. Se on parhaimmillaan sisätilojen visualisoinnissa ja dokumentoinnissa. Vastaavasti ZEB-REVO RT:stä on luotu käyttäjäystävällinen yksinkertaisen käyttöliittymän ja nopeutensa avulla. Laite on tehokkaimmillaan monikerroksisissa sisätilamallinnuksissa, metsissä sekä tunneleissa. On siis hyvä pitää mielessä millainen kohde on kyseessä ja millä menetelmällä siitä saa parhaan mahdollisen tuloksen.

Kirjoittaja

Aino Keitaanniemi, DI


GeoSLAM ZEB-REVO RT

Käsikeilain


GeoSLAMin matkassa: Havaintoja mittausmatkan varrelta, osa 1

Tervetuloa lukemaan blogimme uutta sarjaa. Tässä sarjassa perehdytään siihen, mitä kaikkea GeoSLAMin ZEB-REVO -tuoteperheellä voidaan mallintaa. Sarjan aikana tuodaan esille erilaisia huomioita, joita ZEB-REVOlla mallintaessa voi kohdata. Vaikka sillä laserkeilaaminen onkin helppoa ja nopeaa, voi mittauksen aikana sattua ja tapahtua myös mittaajasta riippumattomia asioita.

Tässä ensimmäisessä osassa käydään läpi tavallisimpia ZEB-REVO -mittauksiin liittyviä huomioita, jotka saattavat jäädä vähemmälle huomiolle mittaustilanteessa. Tällaisia huomioita ovat esimerkiksi mistä mittaus aloitetaan ja millä tavalla kohde tulisi kiertää mittauksen aikana. Näitä vinkkejä jaamme käytännön esimerkkikohteiden avulla. Ensimmäisenä mallinnuskohteenamme oli Tikkurilan kirjaston Tarina-kirjastoauto, koska ZEB-REVO soveltuu hyvin myös pienehköjen kohteiden mittaamiseen.

Kuva 1) Tarina-kirjastoauto ulkoa ja sisältä.

 

Kuva 2) ZEB-REVOn reaaliaikainen versio mittaustilanteessa, jolloin  näytöltä näkee jo mitatut kohteet.

Itse mittauksessa huomioitavia asioita löytyy muutamia. Ensimmäisenä kannattaa pohtia tarkkaan mistä mittaamisen aloittaa ja lopettaa. Saatat kysyä, miksi tämä on niin tärkeää? Oikean aloitus- ja lopetuspaikan valinnalla säästyt monelta turhalta vaiheelta, joita väärän tai huonon paikan valinta tuottaa. Aloitus- ja lopetuspaikan tulee olla tasainen, jotta sillä voi suorittaa mittauksen alustuksen. Tällaisena kohtana toimii esimerkiksi maanpinta, penkki, pöytä tai mikä tahansa taso. Ongelmana on kuitenkin aloituksesta syntyvä kohina, kun mittaaja joutuu kumartumaan keilaimen päälle kytkeäkseen sen päälle ja samoin sammuttaessaan keilainta.

Paras aloitus- ja lopetuspaikka on kohteen läheisyydessä, mutta ei liian lähellä mielenkiinnon kohdetta. Tämän huomioiden aloitimme ja lopetimme mittaukset noin 5 m päästä kirjastoauton viereiseltä lastauslaiturilta. Tällöin saimme hyvän tasaisen alustan mittauksen alustukselle ja aloituksesta syntyvä kohina saadaan helposti siivottua lopullisesta pistepilvestä. Esimerkiksi jos olisimme aloittaneet mittauksen kirjastoauton sisältä olisi aloituksen kohina ollut huomattavasti monimutkaisempaa poistaa lopullisesta pistepilvestä. Kannattaa kuitenkin huomioida, että aloituspiste ei ole keskellä avointa aluetta. Tällöin laitteen paikannus ei saa tarpeeksi havaintoja sijaintinsa määrittämiseksi ja lopputuloksena saatu pistepilvi saattaa olla vääristynyt. Avointa aluetta voi myös muokata laittamalla alueelle joitakin kohteita, jolloin laitteella on enemmän kohteita paikannuksen laskemisessa. Tämä on kuitenkin hieman työläämpää, joten harkitse tarkkaan aloitus- ja lopetuspaikan valintasi.

Toisena tärkeänä huomioitavana on mittaustapa, koska se vaikuttaa lopulliseen pistepilveen. Tästä syystä suosittelemme useammalla kierroksella kohteen mittaamista. Tällöin laserkeilain havaitsee saman kohteen useampaan kertaan ja sen suorittama pisteiden paikannus paranee. Lisäksi useammalla kierroksella kyetään paikkaamaan mahdollisia aukkoja, joita saattaa syntyä tarkimmallekin mittaajalle. Tässä tapauksessa mittasimme kirjastoauton kuvan 2 mukaisella mittausreitillä. Reitti kulki ensin lastauslaiturilta auton keulan kautta sen sisälle, jossa käveltiin kaksi kahdeksikkoa eli ensin auton peräpäähän ja sen jälkeen auton etuosaan. Sisällä tehtyjen kahdeksikkojen jälkeen palattiin takaisin ulos ja jatkettiin matkaa kohti auton peräpäätä. Tämän jälkeen kierrettiin koko auto vielä kerran ympäri hieman alkuperäisestä reitistä eroavalla reitillä ja palattiin takaisin aloituspisteelle.

 

Kuva 3) Poikkileikkaus mitatusta pistepilvestä. Mittausreitti on merkitty punaisella.

Mittausaineistosta voi saada vielä kattavamman useiden kierrosten lisäksi, mittaamalla usealta eri etäisyydeltä. Tällöin laserkeilain saa havaintoja myös kohdista, joita se ei havaitse ensimmäiseltä etäisyydeltä. Esimerkiksi korkeiden rakennusten kohdalla, useammalla mittausetäisyydellä saadaan havaintoja sekä rakennuksen alaosasta että yläosasta. Tällöin alaosasta saadaan tarkempia tuloksia, kun mitataan rakennuksen lähellä esimerkiksi noin 5 m etäisyydeltä ja yläosa saadaan katettua hieman kauempaa mitatulla kierroksella.

Kun mittaukset on tehty, voidaan aineistot ladata omalle koneelle ja rekisteröidä GeoSLAM Hub -ohjelmistossa. Rekisteröinti on helppoa, kun käyttäjänä tarvitsee vain valita lopullisen pistepilven asetukset kuten pistetiheys, pistepilven värjäys ja formaatti. Rekisteröinnin lopputuloksena saimme Tarina-kirjastoautosta kattavan harmaasävyisen pistepilven. Tästä pistepilvestä siivosimme pois aloitus- ja lopetuspaikan kohinat ja rajasimme lopullisen pistepilven kattamaan vain kirjastoauton. Tämä ei kuitenkaan ole lopullinen tuote, koska pistepilven voi jatkojalostaa esimerkiksi 3D-malliksi. Mihin tarkoitukseen sinä käyttäisit tätä pistepilveä?

Kuva 4) Lopullinen Tarina-kirjastoauton pistepilvi ulkoa ja sisältä päin.

Linkki pistepilveen PointScene palvelussa: https://geotrim.pointscene.com/scene/2064ac19/?op=fly_to&cam_pos=13.367,-2.240,0.102&look_at=2.330,-5.230,1.455

Kirjoittaja: DI Aino Keitaanniemi

Kirjoittaja

Aino Keitaanniemi, DI

ZEB-REVO-käsiskannerin soveltuvuus rakennuksen geometrian mittaamisessa

ZEB-REVO-käsiskannerin soveltuvuus rakennuksen geometrian mittaamisessa

Viime joulukuussa julkaistiin diplomityö, jossa selvitettiin Geotrimillä myynnissä olevan käsiskannerin ZEB-REVO:n soveltuvuutta rakennuksen geometrian mittaamisessa. Tarkemmin diplomityön tutkimuksessa selviteltiin samanaikaisesti paikantavan ja kartoittavan (SLAM) käsiskannerin soveltuvuutta rakennuksen geometrian mallintamiseen ja tällaisten mallien luomisen nopeuttamiseen. Tutkimuksessa keskityttiin SLAM-menetelmän käsiskannereihin, joista ZEB-REVO oli tutkimuksen kokeellisessa osassa käytetty mittalaite. Lisäksi tutkimuksen kirjallisuustutkimuksessa esiteltiin ZEB-REVO:n toimintaperiaatteita ja muita markkinoilla olevia SLAM-menetelmän käsiskannereita. Kokeellisissa tutkimuksissa selvitettiin useilla erillisillä analyyseillä ja mittauskohteilla ZEB-REVO:n soveltuvuutta BIM-mallinnukseen. Tutkimus ei kuitenkaan sisältänyt BIM-mallin mallinnusvaihetta.

Mutta ennen kuin mennään syvemmälle tutkimuksen tuloksiin, avataan hieman SLAM-menetelmää. SLAM-menetelmässä laite paikantaa itsensä ilman erillistä paikannussensoria kuten GNSS-paikanninta. Tällöin laite kerää havaintoja ympäristöstään erilaisilla sensoreilla ja muodostaa näistä havainnoista kartan. Tämän kartan ja maamerkkien avulla laite paikantaa itsensä ympäristöönsä nähden. ZEB-REVO:n tapauksessa laite sisältää laserkeilaimen ja inertiaaliyksikön, joiden avulla laite havaitsee oman sijaintinsa ympäristössään. Varsinaisen paikannuksen ZEB-REVO tekee jälkilaskennassa, mutta ZEB-REVO:n uudemmassa versiossa ZEB-REVO RT:ssä paikannus toteutetaan reaaliaikaisesti. Tämän SLAM-menetelmän paikannuksen vuoksi ZEB-REVO soveltuu myös GNSS-paikantimien ulottumattomien kohteiden mittaamiseen.

Kokeellisissa tutkimuksissa selvisi ZEB-REVO:n soveltuvan hyvin rakennuksen geometrian mallintamiseen vain optimaalisten kohteiden kohdalla. Tällaisia optimaalisia kohteita ovat kaikki kohteet, jotka eivät ole liian itseään toistavia käytäviä, suuria halleja tai kasvillisuuden peittämiä kohteita. Tulosten pohjalta ZEB-REVO tarjoaa kuitenkin hyvän BIM-mallinnustarkkuuden vaatimaansa ajankäyttöön nähden, koska mittausaika oli vähintään 10 kertaa nopeampi kuin maalaserkeilaimilla mitatessa. Lisäksi tuloksissa verrattiin tarkkuutta amerikkalaisen GSA:n (General Services Administration) ohjeellisiin mallinnusraja-arvoihin, joiden pohjalta havaittiin kohteen vaikuttavan mallinnuksen lopputulokseen. Tällöin optimaalinen kohde tuottaa koko rakennuksesta hyvän BIM-mallin, mutta sisätiloista tarkkuus jää raja-arvojen ulkopuolelle. Kuitenkin epäoptimaalisesta kohteesta, joita ovat SLAM-algoritmille sopimattomat tilat, BIM-mallin tuottaminen on mahdollista selvästi heikommalla tarkkuudella.

Lisäksi tuloksista havaittiin ZEB-REVO:n mallinnuksen ominaisuuksien ja mittausasetusten vaikuttavan lopputulokseen. Tällaisia ominaisuuksia ovat muun muassa ZEB-REVO:n suhteellisen vähäinen kohina, SLAM-algoritmin hyvä paikannustarkkuus eri tilojen kohteiden välillä ja yli 2cm korkeiden yksityiskohtien havaitseminen. Näitä havaintoja hieman tarkentaen voidaan sanoa ZEB-REVO:n kohinan olevan vähäistä, koska se koostuu muutamista selkeistä hajapisteistä. Se on kuitenkin hieman kohinaisempi kuin maalaserkeilain, mutta jos pieni jälkikäsittely ei häiritse niin ajallisesti ZEB-REVO:lla saat kattavan pistepilven huomattavasti nopeammin kuin maalaserkeilaimilla. Lisäksi ZEB-REVO:n paikannustarkkuuteen ei vaikuta siirrytkö mittauksen aikana tilasta toiseen, koska tutkimuksen koetilanteessa siirryttiin sisälle ja ulos mittauksen aikana ja tarkkuus säilyi samana koko mittauksen ajan. Viimeisenä ominaisuutena ZEB-REVO:lla on sen kyky havaita yli 2cm korkeita kohteita. Tällöin kohteen eron ollessa suurempi kuin 2cm sen ympäristöstä, se voidaan havaita myös ZEB-REVO:n pistepilvestä ilman pisteiden väritietoja.

Tutkimuksen tulokset tukevat laitevalmistajan ohjeiden mukaista mittausetäisyyttä ja rauhallista etenemistä. Nämä mittausasetukset ovat parhaimmillaan, kun mittausetäisyys ja etenemisnopeus ovat alle 10m ja hidaskävely. Tällöin hidas etenemisnopeus mahdollistaa laserkeilaimen tiheän havainnoinnin, jolloin pistepilveen ei jää aukkoja. Vastaavasti alle 10m mittausetäisyys mahdollistaa ZEB-REVO:n tarkkuuden pysymisen mahdollisimman tarkkana eli senttimetrien luokassa. Lisäksi tutkimuksessa havaittiin oviaukkojen mittaamisessa kävelytavan olevan vapaasti valittavissa, mutta tarkimman mahdollisen paikannuksen saamiseksi on suositeltavaa mitata oviaukot sivuttain kävellen.

Kaikkien näiden tulosten pohjalta havaittiin SLAM-käsiskannerin soveltuvan hyvin rakennuksen geometrian mallintamiseen. Suurimpina etuina ZEB-REVO:lla on sen mittausnopeus ja helppokäyttöisyys. Mittausnopeudeltaan ZEB-REVO voittaa minkä tahansa maalaserkeilaimen, koska sillä mitatessa mittausaika on vain murto-osa maalaserkeilaimeen verratessa. Helppokäyttöisyyden osalta ZEB-REVO on onnistunut, koska mitatessa käyttö vaatii vain yhden näppäimen painamisen. Lisäksi helppokäyttöisyys jatkuu vielä jälkilaskennassa, kun käyttäjän tarvitsee vain valita haluamansa lopputuloksen asetukset ja loput jälkilaskennasta onnistuu automaattisesti. Näistä syistä SLAM-käsiskannerit ovat hyvä vaihtoehto koko rakennusten geometrian mittaamiseen.

Lisää aiheesta pääsee lukemaan itse diplomityöstä: http://urn.fi/URN:NBN:fi:aalto-201712188002

DI Aino Keitaanniemi

Analyyseissä Kekkosen työhuoneen seinän kohteita vertailtiin visuaalisesti maalaserkeilauspistepilven ja ZEB-REVO pistepilven välillä. Ylemmässä kuvassa on ZEB-REVO:n pistepilvi ja alemmassa kuvassa on maalaserkeilauksen pistepilvi. Lisäksi kuviin on merkitty valkoisilla nuolilla kohteita, joita eri pistepilvistä voidaan havaita kuten maalaserkeilauspistepilvessä valokatkaisijat ja sohvan selkänojan muodot sekä ZEB-REVO:n pistepilvessä taulu ja kaappi.


Koko ZEB-REVO -aineistoa verrattiin myös maalaserkeilauspistepilveen. Näitä tuloksia edustavat sisätiloissa ylärivin kuvat ja ulkoa alarivin kuvat. Lisäksi kuviin on merkitty suurimmat erot pistepilvien välillä siten, että valkoisella soikiolla on merkitty peilipintojen tai kasvillisuuden aiheuttamat erot ja punaisilla soikioilla on merkitty kohdat, joista ei ollut maalaserkeilausaineistoa tai kohde oli liikkunut mittausten välissä.


Kirjoittaja

Kirjoittaja: Aino Keitaanniemi, DI