Correlator3D – Tehoa ja laatua fotogrammetriseen prosessointiin

Correlator3D on nykyaikainen ja helppokäyttöinen ohjelmisto, joka kuitenkin antaa kehittyneelle käyttäjälle paljon mahdollisuuksia vaikuttaa prosessointiparametreihin. Prosessoinnin työnkulku etenee vaiheittain havainnollisin kuvakkein.

Geotrim Oy:n tuotetarjonta on hiljattain täydentynyt Correlator3D-ohjelmistolla, joka on tarkoitettu fotogrammetriseen pistepilvi-, ortomosaiikki- ja 3D-mallituotantoon. Tuote istuu hyvin Geotrimin profiiliin, koska se on kehitetty puhtaasti geospatiaalisen mallinnuksen lähtökohdista maanmittausalan ja muiden ympäristöteknologioiden ammattilaisille. Huolimatta siitä, että ohjelmisto on helppokäyttöinen, käyttäjällä on laajat mahdollisuudet vaikuttaa prosessointiin ja lopputuotteiden laatuun. Kaikki käyttäjät sovelluksesta riippumatta arvostavat huomattavan nopeaa prosessointia ja joustavaa lisenssipolitiikkaa. Correlator3D on kaikille drone-, ilma- tai satelliittikuvia prosessoiville organisaatioille tutustumisen arvoinen tuote.

Correlator3D ei välttämättä ole monille tuttu ohjelmisto, mutta sen kehittäjä, kanadalainen SimActive Inc., on perustettu jo vuonna 2003, lähes kymmenen vuotta ennen sen tutumpia kilpailijoita. SimActiven historia juontaa juurensa miehitettyyn ilmailuun ja suuren formaatin ilmakuvakameroihin ja yritys toi ensimmäisenä markkinoille tehokkaasti GPU-prosessointia hyödyntävän ilmakolmiointi- ja 3D-moottorin, jotka nopeuttivat prosessointia moninkertaisesti. Tuotetarjontaa laajennettiin tämän jälkeen tukemaan satelliittikuvia ja vuonna 2013 UAV-kalustolla kerätyn kuva-aineiston prosessointiin. Vielä nykyäänkin SimActive on innovaatioiden eturintamassa ja referenssi, johon fotogrammetriaohjelmistojen suorituskykyä verrataan.

Ohjelmiston valintaan kannattaa panostaa

Oikean ohjelmiston valinta fotogrammetriseen prosessointiin voi tuntua hankalalta. Mennäkö massan mukana ja valita kollegan tai tutun käyttämä ohjelmisto, vai tehdä valinta omista lähtökohdista. Useita näkökulmia on syytä ottaa huomioon, koska ohjelmiston valinnalla on vaikutusta koko tuotantoketjuun. Valintaa helpottaa, kun pitää valintaprosessissa mielessä seuraavat viisi valintakriteeriä: prosessointinopeus, lopputuotteiden laatu, ohjelmiston skaalautuvuus, prosessoinnin automatisointi ja muokkausmahdollisuudet. Näitä kriteereitä voi kukin arvottaa omien prioriteettien mukaisesti.

Prosessointinopeus mahdollistaa validoinnin kuvauskohteessa

Minkä tahansa projektin osalta aika on tärkeä tekijä. Correlator3D on suunniteltu käsittelemään jopa 400 Mpix ilmakuvia ja UAV-aineistojen prosessointi kilpailijoihin verrattuna onkin huomattavan nopeaa ja ero kasvaa suurilla kuvamäärillä. Ohjelmiston käyttöön riittää kuitenkin normaali työasema ja se pystyy hyödyntämään tarjolla olevia resursseja optimaalisella tavalla. Mikäli kuitenkin käytettävissä on tehokas näytönohjain, prosessointi tehostuu entisestään merkittävästi. Correlator3D ei kuitenkaan rohmua koneen resursseja omaan käyttöön, vaan fotogrammetrisen prosessoinnin aikana esimerkiksi toimistosovellusten käyttöä voi jatkaa tietokoneella sujuvasti.

Esimerkkinä (Kuva 1) 300 kuvan á 20 Mpix prosessointi valmiiksi lopputuotteiksi tyypillisellä työasemalla kestää noin puoli tuntia, kun verrokkiohjelmistoilla aikamenekki voi olla jopa useita tunteja. Nopean prosessoinnin ansiosta datan validointi pienempien projektien osalta on mahdollista tehdä jopa itse kuvauskohteessa.

Kuva 1. Correlator3D:n prosessointinopeus on huomattava. Ohjelmisto on suunniteltu käytettäväksi tavallisessa tietokoneessa.

Lopputuotteiden laadussa ei ole tehty kompromisseja

Lopputuotteiden laatu on niiden käyttäjälle yleensä merkittävin tekijä. Visuaalinen näyttävyys ei tarkoita automaattisesti sitä, että lopputuotteiden geometrinen tarkkuus on hyvä. Koska Correlator3D on alusta lähtien tehty geospatiaaliseen käyttöön, tuotekehityksessä korkea prioriteetti on luonnollisesti ollut prosessoinnin ja sitä myötä lopputuotteiden laadulla.

Laadun kannalta ilmakolmioinnin merkitys on kriittinen. Ilmakolmioinnin lopputuloksena saadaan kameran kalibrointiparametrit sekä kuvan ulkoinen orientointi eli kuvan sijainti ja asento kuvaushetkellä. Laskennan kaikki muut vaiheet perustuvat ilmakolmiointiin. Vaikka prosessi on täysin automaattinen, Correlator3D -käyttäjä pystyy halutessaan vaikuttamaan ilmakolmioinnin lopputulokseen ja auttamaan ohjelmaa huonolaatuisen tai vaikeissa olosuhteissa otetun kuva-aineiston laadun parantamiseen. Ilmakolmioinnin lopputuloksen ja laadun analysointia helpottaa kattavat raportit ja visualisoinnit.

Skaalautuvuuden ansiosta ominaisuudet eivät lopu kesken

Ajan myötä tarpeet voivat muuttua ja alun perin tehty ohjelmistoinvestointi voi osoittautua riittämättömäksi. Hyvä skaalautuvuus varmistaa, että ohjelmisto vastaa myös tuleviin tarpeisiin. Jo UAV-käyttöön tarkoitettu Correlator3D:n perusversio tukee rajoittamatonta kuvamäärää aina yksittäisen kuvan 50 Mpix kuvakokoon asti. Ohjelmistoa voi laajentaa tukemaan suuren formaatin kameroita ja edelleen satelliittikuvia (Kuva 2).

Correlator3D skaalautuu myös prosessoinnin osalta. Mikäli käytettävissä on useampi Correlator3D-lisenssi, voidaan prosessointi hajauttaa samassa verkossa olevien työasemien kesken ja järjestelmä automaattisesti ohjaa prosessin toiselle työasemalle, mikäli yhteys katkeaa ja ottaa työaseman taas käyttöön yhteyden palauduttua. Prosessoinnin etenemistä eri työasemilla voidaan monitoroida reaaliajassa. Fyysisten työasemien lisäksi Correlator3D tukee pilvipalvelussa olevia virtuaalikoneita.

Kuva 2. Correlator3D skaalautuu kinokoon UAV-kamerakalustosta aina satelliittikuviin.

Automaattinen työnkulku helpottaa ruuhka-aikoina

Kiireisinä aikoina on tärkeää pystyä automatisoimaan tuotantoprosessia. Correlator3D:n automaattisen työnkulun ansiota koko projektin tai sen tiettyjen osien prosessointi voidaan automatisoida. Käyttäjällä on kuitenkin mahdollisuus hallita käsittelyä ja mukauttaa jokaista käsittelyvaihetta haluamallaan tavalla.

Automatisoitu työnkulku (Kuva 3) voidaan ajaa ohjelman käyttöliittymän kautta, tai se voidaan tallentaa halutuilla asetuksilla ja parametreilla komentotiedostoksi projektikansioon, josta se ajetaan automaattisesti tai komentoriviltä.

Kuva 3. Automaattinen työnkulku voidaan luoda Correlator3D:llä ja tallentaa komentotiedostoksi.

Ammattilaiset arvostavat monipuolisia muokkausmahdollisuuksia

”Black box” -tyyppinen ohjelmistoratkaisu harvoin tyydyttää edistyneempää käyttäjää. Vaikka Correlator3D:n työnkulku voidaan pitkälti automatisoida, säilyy käyttäjällä aina mahdollisuus vaikuttaa eri vaiheiden lopputulokseen asetuksilla ja manuaalisella muokkauksella. Esimerkkinä ilmakolmioinnin osalta käyttäjällä on mahdollisuus manuaalisesti editoida vastinpisteitä ja mitata niitä tarvittaessa lisää. Pintamallia ja maastomallia voidaan muokata interaktiivisesti ja ortomosaiikin luonnissa käyttäjällä on mahdollisuus muokata kuvien väritasapainoa ja niiden välisiä saumakohtia ja tuottaa mahdollisimman korkealuokkainen lopputuote.

Monipuoliset lisenssivaihtoehdot tekevät ohjelmistoon tutustumisen helpoksi

Tässä blogissa on mainittu vain pieni osa Correlator3D.n ominaisuuksista. Paras tapa tutustua Correlator3D-ohjelmistoon on prosessoida sillä oma kuva-aineisto, mahdollisesti aineisto, joka on jo prosessoitu jollakin toisella ohjelmistolla. Näin pystyy parhaiten vertailemaan lopputuotteiden laatua ja prosessoinnin työnkulkua ja nopeutta.

Monipuolinen lisenssitarjonta tekee Correlator3D-ohjelmistoon tutustumisen helpoksi. Ilmainen kahden viikon testilisenssi on helppo tapa tutustua ohjelmiston. Sen jälkeen voi valita, ottaako käyttöön joko kuukausi- tai vuositilaukseen perustuvan määräaikaisen lisenssin, pysyvän lisenssin yhdelle koneelle tai joustavan kelluvan verkkolisenssin. Correlator3D:n kerran valinneet eivät enää katso vaihtoehtoisia ratkaisuja!

Kirjoittaja:

Sakari Mäenpää
Myyntipäällikkö

0207 510 622
sakari.maenpaa (at) geotrim.fi

SimActive CORRELATOR3D

Fotogrammetriaohjelmisto

EU:n droneasetusten vaikutus – mitä ja miten?

Tilanne dronetoiminnan ja lentotyön lainsäädännön näkökulmasta on ollut villi, sekava ja oman toiminnan kannalta oleellisia seikkoja on voinut olla vaikea löytää. Täysin selvää tai yksiselitteistä vastausta kaikkiin avoimiin kysymyksiin ei tämän blogin kirjoitushetkelläkään vielä ole. Tämän kirjoituksen tavoitteena on selventää tilannetta lentotyön näkökulmasta ja Geotrim Oy:n oman operaattoriluvituksen aikana opittuja tietoja hyödyntäen.

Aiemmin lentotyössä noudatetun kansallisen määräyksen OPS M1-32 mukainen siirtymäaika päättyi 31.12.2021 ja 1.1.2022 alkaen on siirrytty täysimääräisesti EU:n droneasetuksen käyttöön. Linkin uusiin noudatettaviin asetuksiin (Regulation (EU) 2019/947 and Regulation (EU) 2019/945) löydät myös blogin lopusta. Asetuksen yhtenä tarkoituksena on ollut yhtenäistää EU-maiden dronelainsäädäntöä ja siten osaltaan helpottaa toimintaa myös yli maarajojen muissa EU-maissa.

Osittain uusia asetuksia on noudatettu jo vuoden 2021 alusta alkaen. Tämä on käytännössä näkynyt vaatimuksena rekisteröityä Liikenne- ja viestintävirasto Traficomille ja suorittaa Traficomin teoriakoe. Vaatimus koskee kaikkia yli 250 g painavia tai kamerallisia droneja ja niiden käyttäjiä niin harrastus- kuin yritystoiminnassa. Suoritettu rekisteröinti ja koe mahdollistaa toiminnan Avoin-luokassa, mutta ei sellaisenaan mahdollista kaikkea toimintaa.

Geotrim toimii kotimaisen Nordic Drones Oy:n GeoDrone6-kartoituskopterin sekä saksalaisen Quantum-Systemsin kiinteäsiipisen Trinity F90+ kartoituslennokin jälleenmyyjänä. Toimintamme laitteiden myynnin, koulutuksen ja kokonaisratkaisujen tarjoajana sisältää myös varsinaista lentotoimintaa. Oma ja asiakaskuntamme lentotoiminta voi tapahtua myös tiheästi asutetun alueen yllä, kuten kaupunkimallinnus tai kantakartan ylläpito droneteknologiaa hyödyntäen. Droneasetuksen näkökulmasta tämä toiminta on korkeariskistä toimintaa ja sen toteuttaminen vanhaan kansalliseen määräykseen verrattuna vaatii enemmän valmisteluja ja perehtymistä asiaan. Tämä voi tarkoittaa myös uusien riskiä pienentävien teknisten ratkaisujen käyttöönottoa ja kouluttautumista asian parissa.

Uuden asetuksen mukainen toiminta jakautuu kolmeen kategoriaan, joista tässä käsittelemme kahta olennaista. Toiminta jakautuu Open-, Spesific- ja Certified-kategoriaan. Luokista kolmas on tarkoitettu suurille yli 600 kg painaville tai kuormaa ja ihmisiä kuljettaville tai muuta riskeiltään korkeaa toimintaa suorittaville tahoille. Näin ollen emme tässä käsittele Certified-kategoriaa, vaan keskitymme meille olennaisiin Open- ja Spesific -kategorioiden asioihin. Tekstissä käsittelen näitä myös termein Avoin- (Open) ja Erityinen- (Spesific) kategoria. Lähdetäänpä sitten suoraan liikkeelle Avoin-kategoriasta!

Avoin-kategoria

Lyhyesti kuvattuna Avoin-kategoria on tarkoitettu lähinnä harrastuskäyttöön ja toimii niin sanotusti kaikkia drone-käyttäjiä koskevana lähtötasona. Avoin-kategorian toiminta jaetaan kolmeen alakategoriaan A1-A3 ja siihen liittyy lisäksi yleisiä vaatimuksia, jotka koskevat kaikkia alakategorioita. Avoimen kategorian toiminta ei vaadi erillisiä toimintalupia. Rekisteröityminen ja alakategoriakohteiset vaatimukset tulee kuitenkin täyttää.

Yleisesti Avoin-kategorian kaikessa toiminnassa tulee täyttää seuraavat vaatimukset. Yleisten vaatimusten lisäksi tulee noudattaa alakategoriakohtaisia vaatimuksia.

  • Suurin sallittu lennätyskorkeus 120 metriä maan tai veden pinnasta
  • Toiminnan on perustuttava suoraan näköyhteyteen (VLOS)
  • Suurin sallittu lentoonlähtömassa on 25 kg
  • Vaarallisten aineiden kuljettaminen ja esineiden pudottaminen kielletty
  • Miehittämätön ilma-alus on pidettävä turvallisen välimatkan päässä ihmisistä eikä sitä lennätetä ihmisjoukkojen yläpuolella
  • Toiminnassa on huomioitava ilmailun kielto-, rajoitus- ja vaara-alueet sekä UAS-ilmatilavyöhykkeet

Ja jotta asia ei olisi niin yksinkertainen, laitteiden CE- ja C-luokituksia koskeva siirtymäaika päättyy vasta 31.12.2022. Blogin kirjoitushetkellä ei markkinoilla ole koko maailmassa yhtään uusien asetusten mukaisia C-luokiteltuja laitteita. Siirtymäajalla voidaan käyttää kuitenkin muita kuin C0-C6 -luokituksen omaavia droneja erillisen ohjeen mukaisesti.

Voinko tehdä lentotyötä Avoin-kategoriassa?

Vastaus kysymykseen on erittäin rajoitettu kyllä. Lentotyötä voidaan tehdä Avoin-kategoriassa, mikäli lentotyössä voidaan noudattaa kaikkia Avoin-kategorian ja sen alakategorian vaatimuksia. Mikäli on yksikään vaatimus, jota ei voida toteuttaa, ei toimintaa voida tehdä Avoin-kategoriassa. Nämä vaatimukset eivät erittele harrastusta tai lentotyötä.

Lentotyö Avoin-kategoriassa käytännössä?

Niin harrastaminen kuin lentotyö, ovat molemmat hyvin rajoitettua toimintaa Avoimessa kategoriassa. Mikäli Avoimen kategorian ja alakategorioiden vaatimuksista poiketaan edes yksittäisen vaatimuksen osalta, täytyy toiminta suorittaa Erityinen-kategoriassa. Mietitään toimimista Avoin-kategoriassa muutaman käytännön esimerkin avulla.

Esimerkki 1:

Kalle Kartoittaja on saanut käyttöönsä 2020 keväällä Phantom 4 RTK-dronejärjestelmän, jota käytetään orto-, viistokuva- ja fotogrammetrisen pistepilven tuotannossa. Ajoittain tuotetaan myös mainosvideoita ja -kuvia. Toiminta tapahtuu tiheästi asutetulla alueella sekä sen ulkopuolella.

Esimerkin 1 kaltainen tilanne on varmasti monille tuttu. Mitä tämä on tarkoittanut siirtymäajan alusta 1.1.2021 alkaen ja tarkoittaa vielä siirtymäajan loppuun 31.12.2022? Yllä olevassa taulukossa nähdään lyhyt yhteenveto kyseisestä tilanteesta. Mietitään tilanne nyt ja tilanne siirtymäajan jälkeen.

Nykytilanne:

Laite menee painonsa puolesta (500 g – 2 kg) siirtymäajan A2-alakategoriaan. Laitteella ei ole C-luokituksia. Laitteella voidaan siis operoida siirtymäajan puitteissa A2-alakategorian vaatimusten mukaisesti. Toimintaa voidaan siis tehdä niin tiheästi kuin harvaan asutetulla alueella, KUNHAN toimintaa EI suoriteta yhdenkään toimintaan kuulumattoman ihmisen yllä, vaan heihin tulee pitää sivuttaissuuntaista etäisyyttä aiemminkin mainitulla 1:1 säännöllä. Tämä käytännössä estää tehokkaasti kaupunkialueella tapahtuvan toiminnan.

1.1.2023 jälkeen:

Laite menisi painonsa puolesta A2-alakategoriaan, mutta C-luokitusten puuttuminen pakottaa toimimisen A3-alakategoriassa. Eli C-luokittelemattomalla alle 25 kg laitteella voidaan siirtymäajan jälkeen toimia A3-alakategorian mukaisesti. Kaukana kaikesta asutuksesta ja ihmisistä (vähintään 150 m).

Esimerkki 2.

Kalle Kartoittajalla on käytössään myös suurempi kotimainen GeoDrone6, jonka tyhjäpaino on 2 kg ja maksimipaino hyötykuormasta riippuen 6.4 kg. Laitteella ei myöskään ole C-luokituksia.

Nykytilanne:

Laite ei mene painonsa puolesta (yli 2 kg) siirtymäajan A2-alakategoriaan vaan toiminta joudutaan tekemään avoimen A3-alaluokassa.

1.1.2023 jälkeen:

Laite voisi hyötykuormasta riippuen soveltua A2-alaluokan mukaiseen toimintaan, mutta toiminta joudutaan suorittamaan A3-alaluokan mukaisesti C-luokitusten puuttuessa.

Avoin-kategoria ammattikäytössä?

Edellä on pyritty kuvaamaan Avoimen-luokan mahdollistama toiminta ja toiminnan rajoitteet. On sanomattakin selvää, että Avoin-kategoria ei sovellu moneenkaan ammattikäytön tarkoitukseen. Kaukana asutuksesta, rakennuksista ja ihmisestä tapahtuva toiminta voidaan nyt ja jatkossakin suorittaa Avoin-kategorian yleisiä ja A3-alakategorian vaatimuksia noudattaen.

Luvanvarainen Erityinen-kategoria

Mikäli toimintaa ei voida suorittaa Avoin-kategoriassa, tulee toiminta toteuttaa Erityinen-kategoriassa. Tämä kategoria kattaa kaikki miehittämättömät ilma-alukset painoltaan aina  600 kg asti. Tässä kategoriassa voidaan myös operoida laitteilla, joilla ei ole C-luokituksia. Erityinen-kategoria perustuu toimintaluvan hakemiseen. Toimintalupa haetaan kansalliselta ilmailuviranomaiselta, Suomessa Traficomilta. On huomioitava, että myös Erityinen-kategoriassa tulee olla rekisteröitynyt ja verkkoteoriakoe suoritettuna ja rekisteröitymisjakson on oltava voimassa. A2-luokkahuonekoetta ei tietyissä tapauksissa tarvitse olla suoritettuna, vaan vastaava tietotaito tulee osoittaa muulla tavoin. Erityinen- kategoria on luvanvaraista myös harrastustoiminnassa. Toimintalupaa voidaan tällä hetkellä hakea muutamalla eri tavalla.

Erityinen-kategoriassa puhutaan Operaattorista. Operaattori voi olla esimerkiksi yritys. Allekirjoittaneella operaattorina toimii Geotrim Oy, jonka alle sijoittuu kauko-ohjaajat ja muut nimetyt operaattorin toimintaan osallistuvat henkilöt. Operaattori on rekisteröity operaattori, jolla Traficom myöntää operaattoritunnuksen. Operaattorin alla toimivien kauko-ohjaajien tulee olla rekisteröity operaattorin alle ja heillä tulee olla suoritettuna verkkoteoriakoe. Huomioitavaa tässä on, että kauko-ohjaajan suoritettu verkkoteoriakoe on kauko-ohjaajakohtainen, jota kauko-ohjaaja voi käyttää tätä myös vapaa-ajalla. Huomioitava on kuitenkin että vapaa-ajalle sekä lentotyöhön organisaation tai yrityksen alla tulee olla rekisteröitynyt operaattori. Tämä voi tarkoittaa sitä että kauko-ohjaaja on rekisteröity organisaationa/yrityksenä toimivan operaattorin alla ja vapaa-ajallaan itsenäisesti henkilökohtaisen rekisteröinnin kautta.

Toimintalupaa voidaan hakea EASA:n julkaiseman ennakkoriskiarvion eli PDRA (Predefined Risk Assessment) mukaan tai toimijan oman SORA-riskiarvio (Spesific Operations Risk Assessment) menetelmän mukaisesti. Erityisen- kategorian toimintalupaa voidaan hakea tulevaisuudessa myös vakioskenaarioiden eli STS (Standard Scenario) mukaisesti. Vakioskenaarioissa laitteen tulee olla C-luokiteltu (C5- ja C6-luokitukset). C-luokiteltujen laitteiden vielä puuttuessa voidaan vakioskenaarioden mukaisia toimintalupia hakea Traficomin mukaan vasta 2.12.2023 alkaen. On olemassa vielä neljäs tapa toimintaluvan saamiseksi, joka on LUC-hyväksyntätodistus. LUC eli kevyen miehittämättömän ilma-alusjärjestelmän käyttäjän hyväksyntätodistus. LUC-todistus edellyttää todella kokenutta useita toimintalupia hakenutta ja pitkää kokemusta Erityinen-kategoriassa toimimisesta. LUC-todistus jää useimmille toimijoille melko kaukaiseksi, joten LUC-hyväksyntäprosessia tai sen vaatimuksia en tässä kirjoituksessa käsittele.

Toimintaluvan hakeminen PDRA:n perusteelle

Toimintaluvan hakeminen käyttäen PDRA:ta on tällä hetkellä Erityinen- kategorian helpoin ja suoraviivaisin tapa. Tämä tietysti edellyttää, että ajateltu toiminta voidaan toteuttaa jonkin PDRA-dokumentin reunaehtojen mukaisesti. Kirjoitushetkellä EASA on julkaissut neljä PDRA-tyyppiä. Tutustutaan seuraavaksi näiden sisältöön.

Yllä olevassa taulukossa on kootusti esitetty PDRA-tyyppien olennaiset toimintaa vahvasti ohjaavat reunaehdot. On huomioitava, että jokaisen PDRA:n osalta löytyy tarkempi dokumentointi ja tarkemmat kuvaukset vaatimuksista. Mikäli jokin näistä PDRA-tyypeistä soveltuisi toimintaan, voidaan sen pohjalta hakea toimintalupaa. PDRA-tyypin lisäksi toimintaluvan hakemisessa tulee droneoperaattorilla olla muita dokumentteja. Näitä dokumentteja ovat PDRA:han liittyvän toiminnan kuvaus ja ehdot taulukko, jossa operaattori kuvaa kuinka toiminnan reunaehdot tullaan täyttämään. Lisäksi tulee olla toimintakäsikirja, jossa kuvataan ohjeiden mukaisesti operaattorin toiminta. Tämän lisäksi hakemuksesta riippuen voi olla tarpeen toimittaa lisäliitteitä PDRA:n kuvaus ja ehdot taulukon vaatimusten toteuttamisen todistamiseksi.

Toimintaluvan hakeminen SORA-riskiarvion perusteella

Mikäli toimintaa ei voida suorittaa Avoin-kategorian vaatimusten tai ennalta määritellyn riskiarvion PDRA:n mukaisesti tulee toimintalupa hakea SORA-prosessin kautta. EU:n miehittämättömän ilmailun täytäntöönpanoasetuksen 11. artikla käsittelee Erityinen-kategorian riskiarviomenettelyä. SORA-menettelyn perustana on taata operaatiolle sama turvallisuustaso kuin miehitetyssä ilmailussa. SORA-menettely on kymmenosainen ja koostuu seuraavista osista.

SORA-prosessin kautta tehtävä riskien lievennysten ja tavoitteiden kattava perustelu antaa riittävän varmuuden aiotun toiminnan turvallisuudesta. SORA-prosessin vaatimusten lisäksi operaattorin tulee huomioida myös muita lisävaatimuksia. Näitä vaatimuksia voivat olla esimerkiksi turvallisuus- ja tietoturva-asiat, yksityisyyden suojeleminen ja ympäristön suojeleminen. Operaattorin tulee myös tunnistaa sekä tarvittaessa koordinoida toiminta asiaankuuluvien sidosryhmien, kuten ympäristönsuojeluviranomainen, kansalliset turvallisuuselimet jne. Operaattorin tulee varmistaa, että SORA-riskiarvion ja todellisten toimintaolosuhteiden välinen johdonmukaisuus.

Tällä prosessilla katetaan ja pyritään vastaamaan asetuksen vaatimuksiin operaattorin, sen henkilöstön, kaluston, toimintaympäristön, koulutuksien, kertauskoulutuksien, pätevyyksien, koulutusvaatimuksien jne. osalta. Tätä kaikkea sisältöä ja asetuksen tarkempia vaatimuksia ei ole mielekäs lähteä tässä yhteydessä avaamaan. Myös vaatimustaso vaihtelee huomattavasti, riippuen toiminnan luonteesta.

EU-asetukset käytäntöön ja luvat kuntoon?

Nyt kun olemme päässeet tekstin myötä jonkinlaiseen ymmärrykseen ja ehkä myös osittain kasvavaan hämmennykseen asetusviidakosta, ja siitä miten toimintaa tulisi jatkaa, voimme pysähtyä miettimään seuraavia askelia.

Aivan ensimmäinen askel kaikkeen lentotyöhön on siis Operaattorin rekisteröinti ja operaattorin alla toimivien kauko-ohjaajien rekisteröinti ja verkkoteoriakokeet. Valvottu A2-luokkahuoneteoria ei välttämättä Erityinen-kategoriassa ole tarpeellinen, muttei siitä missään tapauksessa haittaakaan ole. Mikäli toiminta voidaan toteuttaa Avoin-kategorian mukaisesti ei edellä mainittujen ensimmäisten askelien jälkeen muuta tarvita. Nämä ensiaskeleet ovat pakollisia, myös siinä tapauksessa, että myöhemmin haetaan Erityinen-kategorian toimilupaa.

Mikäli toiminta ei sovellu tehtäväksi Avoin-kategorian mukaisesti on se automaattisesti tehtävä Erityinen-kategoriassa. Mikäli toimintaan löytyy soveltuva riskiarvio (PDRA), voidaan edelläkin kuvattujen vaiheiden kautta hakea toimilupaa. Mikäli mikään PDRA-malli ei sovellu toimintaan, tulee toimilupa hakea aiemminkin kuvatun SORA-prosessin siivittämänä.

Mitäpä tämä kaikki voisi tarkoittaa käytännössä? Esimerkiksi kaupunkialueoperointia yhdenkään sivullisen toimintaan kuulumattoman ihmisen päällä, kalustosta riippumatta, ei voida toteuttaa missään Avoin-kategorian alakategoriassa tai millään valmiilla Erityinen-kategorian PDRA-mallilla. Tämä tarkoittaa heti, kalustosta riippumatta, Erityinen-kategorian SORA-prosessia toimiluvan saamiseksi.

Asetus ja viranomaisnäkemys asetuksesta ja sen noudattamisesta on yksiselitteinen ja tiukka. Ilman asianmukaista uuden regulaation mukaista toimilupaa ei Avoin-kategorian toimintaa lukuun on asetusten vastaista ja siten kiellettyä. Se millä kalustolla, vaatimuksilla ja mihin toimintaympäristöön toimilupia haetaan, vaikuttaa tapauskohtaisesti SORA-prosessin vaiheiden vaatimuksiin. Näin ollen en tässä yhteydessä pysty antamaan tarkkaa kokonaiskuvaa, mutta käytän esimerkkinä toimilupaprosessia, jota olen itse ollut viemässä eteenpäin. Kirjoitushetkellä prosessi on vielä viimeisiä viranomaiskeskusteluja vaille, mutta valmistunee lähiviikkoina Geotrim Oy:n toimiluvan muodossa. Sitä ennen kaikki kalusto pysyy maassa.

No itse lupaprosessiin sitten. Geotrim on operaattorina rekisteröitynyt ja kauko-ohjaajamme ovat sen mukaiset vaatimukset täyttäviä. Jo heti prosessin alkumetreillä, totesimme että tulemme hakemaan toimilupaa GeoDrone6-kalustolle vaativaan kaupunkiympäristöön, jossa toiminta tapahtuu sivullisten ihmisten yllä. Tämä osoittautui ainoaksi tavaksi mahdollistaa kaupunkikartoituksen jatkaminen. Prosessin aikana on pyritty hakemaan ja luomaan toimintamalleja, joilla voisimme yhdessä asiakkaan kanssa mahdollistaa heidän toimintansa jatkuminen. Nämä toimintamallit on pyritty hakemaan ja luomaan sellaisella tasolle, että voisimme jossakin vaiheessa tarjota kokonaisratkaisua ja -palvelua asiakkaidemme toimintaympäristöön. Asiakasympäristöön soveltuvan ratkaisun parissa emme kuitenkaan vielä ole täysin valmiita.

SORA-prosessin vaiheiden mukaisesti ja prosessia läpi käydessämme, loimme ConOps:in eli toimintakuvauksen. ConOps on käsikirja operaattorin toimintaan ja sen tulee olla muuttuva dokumentti, jota ylläpidetään tarvittaessa jonkin asian muuttuessa tai toiminnan kehittyessä. Toimintamme ilman riskien lievennyksiä sijoittuisi jäännösriskiltään luokkaan SAIL4. Ja jotta toimiluvan saaminen olisi tässä tapauksessa mahdollinen, tulee riskiä pystyä lieventämään luokkaan kaksi (2). Riskiluokka kaksi voidaan ajatella riskeiltään sen tasoisena, että toiminta tapahtuisi harvaan asutulla alueella kaukana ihmisistä.

SORA-prosessi mahdollistaa riskin pienentämiseen muutamia keinoja. Keinoina voidaan käyttää ns. Strategisia maariskin lieventämistoimenpiteitä, kuten maa-alueen eristämistä ja sivullisten ihmisten pääsyn rajoittamista. Toisena keinona on Suorat maavaikutuksen riskien lieventämiskeinot eli keinot vähentävät maassa olevan sivullisen ihmisen riskiä. Toimiluvassamme tätä riskiä on haettu pienennettäväksi keskitason keinolla (Medium, -1) eli tapauksessamme GeoDronen ja laskuvarjon integraatiolla. Laskuvarjointegraatio on kehitetty GeoDrone6-valmistajan eli Nordic Drones Oy:n johdolla ja kyseessä on pitkälle viety ja käytännön testeillä todennettu integraatio. Nordic Dronesin työn pohjana on toiminut EASA:llekin ehdotettu ASTM F3322-18- UAS laskuvarjostandardi ja tätä standardia Nordic Drones Oy on käyttänyt tekemiensä laskuvarjokehityksen ja -testaustyön taustana ja pohjana. Laskuvarjointegraatiolla pyritään siis pääsemään riskiluokasta 4, riskiluokkaan 3. Riskiluokka 3 ei vielä kuitenkaan sellaisena ole riittävän matala. Kolmantena keinona on käytettävissä Maariskin lievennys hätätilannesuunnitelmalla. Jotta riskiluokasta 3 voitaisiin päästä riskiluokkaan 2 on hätätilannesuunnitelma laadittava High-tason standardien mukaisesti. Tämä tarkoittaa vaativinta mahdollista hätätilannesuunnitelmaa, joka monelta osaltaan vastaa jo miehitetyn ilmailun vaatimuksia.

Tämän jälkeen prosessi jatkuu SORA-vaiheiden mukaisesti ilmariskien määrittelyllä. Toiminta tapahtuu näköyhteydessä (VLOS), joten ilmariskien osalta näköyhteydessä tapahtuva toiminta on riittävän turvallista ja ilmariskien osalta tässä tapauksessa vaivaton toteuttaa. Maariskin ja ilmariskin määrittelyn ja lieventämistoimenpiteiden avulla jäännösriskitasolla saavutamme tavoitellun riskiluokan SAIL2 (Spesific Assurance ja Integrity Level), joka mahdollistaa toiminnan kaupunkialueilla sivullisenkin ihmisen yläpuolella. Prosessiin liittyy vielä vaiheita ja monia yksityiskohtia, joita en tässä kirjoituksessa tule käsittelemään.

Viimeistään tässä vaiheessa toivon, että kirjoitus on herättänyt ajattelemaan omaa toimintaanne ja sen toteuttamista vastuullisesti ja regulaatioita noudattaen. Olemme mielellämme mukana kanssanne kehittämässä toimintaa, yhdessä ja vastuullisesti! Hyvää alkanutta vuotta 2022.

Pidämme aiheen tiimoilta webinaarin 12.1.2022, webinaariin voi ilmoittautua https://attendee.gotowebinar.com/register/8230007681769439759 -linkin kautta.

GeoDrone7

Multikopteri

Trimnet-verkon tukiasemat uusiutuivat. Mitä on uuden tekniikan sisällä?

Trimble Alloy -vastaanotin

Kaukana ovat ne päivät, jolloin satelliittivastaanottimilla jouduttiin keräämään satelliittidataa tarkkojen koordinaattien määrittämiseksi tuntikausia tai etsimään maastosta tunnettuja kiintopisteitä, joille pystytettiin oma tukiasema parin tunnin mittauksien vuoksi. Näistä ajoista on satelliittiteknologian kehittynyt paljon: on tullut uusia satelliittijärjestelmiä ja Trimblen VRS-teknologian myötä satelliittimittausten luotettavuus ja tarkkuus ovat kasvaneet: satelliittipohjaisiin ratkaisuihin voidaan luottaa senttimetriluokan tarkkuuksia haettaessa.

Satelliittiteknologian kehitys on jatkuvaa

Trimnet VRS-palvelu pitää katseen tulevaisuudessa. Satelliittiteknologian parissa työskenteleminen on pitkäjänteistä, jatkuvaa kehittämistä.

Trimnet-palvelussa teknisellä puolella on huomioitu suomalaiset olosuhteet niin koordinaatistojen kuin pohjoisen sijaintimme suhteen. Kehittämisen hyödyt näkyvät käyttäjille, ja erityisesti uusilla sovellusalueilla, joilla on etsitty hyötyjä uudesta teknologiasta – satelliittimittaamiseen tarkoitettuja laitteita on voitu hyödyntää tehokkaammin ja luotettavammin.

Perinteisessä maanmittauksessa on löydetty uusia ulottuvuuksia ja työtapojen muutoksia, kun esimerkiksi optisista laitteista on siirrytty GNSS-mittauslaitteisiin.

Työskentely on muuttunut myös infrarakentamisessa, kun on huomattu koneohjauksessa Trimnet-satelliittimittauksen tuomat kokonaistaloudelliset hyödyt.

Geotrim on tehnyt mittavan investoinnin Trimnet VRS-palveluun ja tulevaisuuteen. Palveluun liittyvässä tukiasemateknologiassa on panostettu uusimpaan teknologiaan ja kaikki Trimnet-verkon tukiasemat on päivitetty uusimman teknologian Trimble Alloy -vastaanottimiin 2020-2021. Alloy-vastaanottimet pystyvät hyödyntämään kaikkia uusia GNSS-signaaleja, mukaan lukien uusia BeiDou (III)-signaaleja. Alloy varmistaa paremman datan laadun, järjestelmän monitoroinnin sekä tehokkaamman häiriönsietokyvyn.

Tietoa Trimble Alloy -vastaanottimista
Trimble Alloy -vastaanotin

SEURATUT SATELLIITIT • GPS: L1 C/A, L2E (L2P), L2C, L5 • GLONASS: L1 C/A2 and unencrypted P code, L2 C/A and unencrypted P code, L3 CDMA • Galileo: L1 CBOC, E5A, E5B & E5AltBOC, E6 • BeiDou: B1, B2, B3, B1C, B2A • QZSS: L1 C/A, L1C, L1 SAIF, L1S , L2C, L5, LEX/L63 • IRNSS: L5, S-Band • SBAS: L1 C/A (EGNOS/MSAS), L1 C/A and L5 (WAAS) • L-Band: Trimble RTX™

Haluatko lisätietoa tekniikasta

Kaikille Trimnet-tukiasemille on v.2020-2021 vaihdettu modernisoidun GNSS-teknologian Trimble Alloy -vastaanottimet

  • Edistyksellinen Trimble kahden Maxwell™ 7 GNSS sirun setti: 672 kanavaa samanaikaista satelliittien seurantaa varten
  • Trimble EVEREST Plus™ monitieheijastusten esto
  • Trimble 360 -vastaanotinteknologia
  • IP68
  • Trimble RTX korjaukset
  • Trimble Sentry™ -monitorointiteknologia
  • Pivot-ohjelmistoalusta

Trimnet-palveluun tiivistyy tuottavuus, luotettavuus ja uudet mahdollisuudet

Uusien signaalitasojen hyödyntäminen ja palvelun tuottaminen mallinnetun datan pohjalta sekä varmennettu verkko-RTK-ratkaisu tuovat aitoa luotettavuutta ja tuottavuutta jokapäiväiseen tarkkaan paikantamiseen. Mahdollisuudet näkyvät siinä, että Trimnet VRS-palvelun kanssa voidaan käyttää GNSS-laitteita entistä erilaisemmissa ympäristöissä. Mahdollisuudet kuuluvat nykyisille palvelunkäyttäjille ja voivat tulevaisuudessa näkyä niin autonomian kuin robotiikankin lisääntymisenä.

Parhaat toimintatavat SLAM-laserkeilaamiseen

SLAM-laserkeilaaminen on helppoa, koska laitteiden käyttöliittymät pohjautuvat yhteen painikkeeseen. Tämä painike aloittaa laserkeilaimen pyörivän liikkeen, joka suuntaa lasersäteet ympäristöön, ja käynnistää SLAM-algoritmin, joka määrittää laitteen ja ympäristön piirteiden sijainnit. Käynnistämisen jälkeen voidaan nostaa keilain käteen ja kävellä mitattavassa ympäristössä. Kun mittaus on suoritettu, palataan takaisin aloituspisteeseen ja painetaan samaa painiketta uudestaan mittauksen lopettamiseksi. SLAM-laserkeilaimen käytön oppii minuuteissa. Parhaan mahdollisen pistepilven tuottamiseksi kannattaa huomioida seuraavat toimintatavat.

Suunnittelemalla säästät aikaa ja saat parhaimman laadun

Aloita aina uuden kohteen mittaaminen tekemällä suunnitelma mittausreitistä. Voit toteuttaa sen ennakkoon pohjapiirroksen avulla, mutta kannattaa aina kohteeseen saavuttua kävellä suunniteltu reitti läpi ennen mittausta. Tällöin havaitset mahdolliset muutokset ja erityispiirteet, joita pohjapiirroksessa ei näkynyt. Suunnittelussa tulee huomioida laitteiden mittaamisen peruspiirteet; aineiston keruu on suositeltavaa toteuttaa suljettuna kierroksena maksimissaan 20-30 minuutin aikana, ympäristössä tulee olla vähintään 10 m välein piirteitä/kohteita, keilaimen tulee osoittaa kohtisuorasti piirteisiin/kohteisiin ja mitattavien tilojen ovien olisi hyvä olla auki mittauksen ajan.

Mittauksen suunnittelulla voidaan estää virheiden syntyminen ja optimoida mittausaika sekä laatu. Lisäksi samalla voi suunnitella kontrollipisteiden paikat, jos aineisto vaatii georeferointia. Suunnitelmalla varmistetaan mittausreitin turvallisuus (esim. huomioiden työmaaliikenne) ja se, että kaikista tarvittavista ympäristöistä saadaan aineistoa. Suunnittelussa voidaan varmistaa tarvittavien suljettujen kierrosten muodostuminen ja listata kaikki avattavat ovet, jotta niiden takana olevista huoneista saadaan havaintoja. Lisäksi suunnitelmassa on hyvä tunnistaa hankalat olosuhteet kuten kapeat käytävät tai isot avoimet tilat, peitteisyydet, kiiltävät ja liikkuvat kohteet.

Lataa opas pdf-muodossa

Sulje aina mittausreitti samaan aloitus- ja lopetuspaikkaan

Suunnittelussa tärkeänä kohtana on mittausreitin sulkeminen, koska tällä tavalla varmistetaan laitteen tarkkuus. Sulkemisen mahdollistamiseksi tulee mittaus aloittaa ja lopettaa samaan paikkaan tai ainakin yhden metrin päähän aloituspaikasta. Valitse mittausreitin varrelta mittaukselle hyvä aloitus- ja lopetuspaikka. Tässä paikassa on hyvä olla jokin taso ja sopivan etäisyyden päässä useita piirteitä. Tasoa kannattaa käyttää laskualustana laitteen alustuksen ajan. Kun piirteitä on alle kymmenen metrin päässä, on niitä sopivasti. Lisäksi aloitus- ja lopetuspaikasta pitäisi pystyä aloittamaan mittaus yhteen suuntaan ja lopettamaan toisesta suunnasta. Tämän tavoitteena on suunnata laite lopussa samoihin piirteisiin kuin alussa.

O-kirjaimen muotoinen mittausreitti on aina paras

Sulkemisen lisäksi myös mittausreitin muodolla on merkitystä. Esimerkiksi kuvassa 1 u-kirjaimen mallinen rakennus vaikuttaa mittauksen suunnitteluun ja pistepilven tarkkuuteen. Tila voidaan mitata u-kirjaimen päästä päähän eli A:sta B:hen ja takaisin, jotta saadaan suljettu kierros aikaiseksi (kuva 1a). Tällöin pistepilven tarkkuus voi olla esimerkiksi noin 5 cm.

Mittausreitin parantamiseksi, ja samalla tarkkuuden parantamiseksi 1 cm luokkaan, olisi hyvä luoda o-kirjaimen muotoinen suljettu kierros. Jos kerros on katutasolla ja on mahdollista kulkea suoraa reittiä B:stä A:han ulkona, kannattaa näin toimia (kuva 1b). Tällöin suljettu kierros lisää havaintoja A- ja B-pisteiden välille ja paikannuksen tarkkuus paranee. Mikäli ulkotilan kautta ei päästä kulkemaan B:stä A:han, voidaan näiden väille luoda yhteisiä havaintoja ikkunoiden kautta. Tämä onnistuu laittamalla keilain ikkunasta ulos molemmissa u-kirjaimen päissä. Kannattaa kuitenkin huomioida keilaimen maksimi mittausetäisyys. Pidemmän mittausetäisyytensä (100 m) vuoksi GeoSLAM ZEB HORIZON toimii tähän tarkoitukseen paremmin kuin muut GeoSLAM-keilaimet.

Mikäli o-kirjaimen muotoinen mittaus ei onnistu, voi tarkkuutta parantaa aloittamalla mittaus u-kirjaimen pohjalta pisteestä C (kuvassa 1c). Tällöin mittausreitistä muodostuu kahdeksikko ja lisäämme suljettuun kierrokseen yhden sulkupisteen lisää (pisteeseen C), joka auttaa paikannusta. Mittauksen aikana pisteestä C kuljetaan ensin pisteeseen A ja sitten takaisin. Tämän jälkeen kuljetaan pisteeseen B ja takaisin pisteeseen C. Suunnittele mittausreitti hyvin, jotta aineistosi olisi mahdollisimman tarkka. Mitatessa useampia kerroksia huomaa, että voit sulkea kierroksia myös kerrosten välillä.

Kuva 1. Kierroksien sulkemisen vaihtoehtoja a) aloita mittaus A:sta kohti B:tä (keltainen) ja palaa takaisin samaa reittiä (sininen) eli kierroksesta muodostuu u-kirjaimen muotoinen b) aloita mittaus A:sta kulkien (keltaista) B:n kautta lyhintä reittiä takaisin A:han (sinistä) eli kierroksesta muodostuu o-kirjaimen muotoinen c) aloita mittaus C:tä ja kulje ensin A:han (keltaista) ja takaisin (sinistä) ja sen jälkeen B:hen (keltaista) ja takaisin (sinistä) eli muodosta kahdeksikon muotoinen mittaus. 

Mitä enemmän suljettuja kierroksia keilauksen aikana, sitä parempi tarkkuus

Kuten kuvan 1 esimerkistä havaitaan, vaikuttaa suljetun mittauksen lenkin koko tarkkuuteen. Jos lenkki on suuri, sitä suurempi mahdollisuus on syntyä absoluuttista virhettä. Suunnittele siis lenkin sisälle pienempiä lenkkejä kohteiden ympäri, jotta virheitä ei syntyisi. Samalla yhdessä huoneessa tehdyt useat kierrokset lisäävät aineiston kattavuutta. Tästä esimerkkinä, mikäli kierrät huoneessa ensin yhteen suuntaan ja sitten toiseen saat varmemmin kaikkien nurkkien takaa havaintoja eikä aineistoon jää aukkoja. Havaittujen kohteiden seuraaminen on helppoa ZEB-REVO RT -laitteella, joka näyttää reaaliajassa mitä havaintoja laite saa. Minimi tarve sisäisille silmukoille vaihtelee laitteittain. ZEB-REVO RT ja ZEB Go -laitteilla suositellaan sisäisiä silmukoita vähintään noin 30 m välein, kun ZEB HORIZON:lle suositellaan noin 50 m välein.

Tarkastellaan tarkemmin pienempiä silmukoita mittauskierroksen sisällä kuvan 2 kautta. Voit kävellä sisätiloissa huoneeseen monilla tavoilla, mutta tee aina käännökset hitaasti, jotta laiteen paikannus saa tarpeeksi havaintoja tutuista piirteistä ennen uusia piirteitä. Kävele muutenkin hieman normaalia kävelynopeuttasi hitaammin. Tämä takaa mahdollisimman tiheän pistepilven saannin. Huoneissa voidaan vain käväistä, jolloin aineisto on käyttökelpoista (kuva 2). Tällä tavalla pistepilveen jää kuitenkin helposti aukkoja. Tätä menetelmää parempi tapa on kiertää huoneessa “seiniä pitkin”. Saat kattavamman pistepilven, mutta osa pinnoista voi jäädä havainnoitta. Paras kävelytapa on kierrellä huoneessa useita silmukoita ja vaihtaa jopa kiertosuuntaa välillä. Tämä aineisto kattaa varmasti suuren osan huoneesta ja saat enemmän havaintoja kohteista.

Kuva 2. Kävelytavalla on vaikutusta SLAM-laserkeilaimen pistepilveen. Käväisemällä huoneessa saadaan käyttökelpoinen aineisto, mutta seiniä pitkin tai useita silmukoita luomalla aineisto paranee huomattavasti. 

Varmista kattavat havainnot ennen tilasta toiseen siirtymistä

Seuraavaksi huomioi mitatessasi siirtymiset tilasta toiseen. Siirtymätavalla on suuri merkitys, kun seuraavassa tilassa on vähemmän piirteitä. Tällöin voit siirtyä tilaan sivuttain tai takaperin tai pysähtymällä hetkeksi ja heiluttamalla laitetta hitaasti tilasta toiseen oviaukossa. Kaikissa näissä tavoissa on tarkoitus osoittaa laitteelle piirteitä molemmista tiloista, jotta ne havaittaisiin oikein toisiinsa nähden (kuva 3).

Kuva 3. Tilasta toiseen voi siirtyä monella tavalla. Sisällä on suositeltavaa siirtyä sivuttain, takaperin tai hetkeksi pysähtymällä oviaukkoon. 

Jokaisella tavalla mitatessa on kuitenkin hyvä hidastaa kävelynopeus kolmannekseen normaalista kävelynopeudesta. Sisällä siirtymiä varten on suositeltavaa avata ovet ennakkoon, mikäli se on mahdollista. Voit kuitenkin avata oven keilauksen aikana, jos teet sen laitteen pimeässä kulmassa. Laitteen pimeä kulma on 90 astetta ja se sijaitsee suoraan keilaimen takana, mittaajan kohdalla. Tämä onnistuu peruuttamalla suljetulle ovelle ja avaamalla ovi niin, että laite osoittaa vastakkaiseen suuntaan. Samalla oviaukosta siirryttyäsi muista olla näyttämättä laitteelle suljettua ovea, jotta SLAM-paikannus säilyy (kuva 4).

Kuva 4. Suljetun oven voi avata mittauksen aikana selän takana laitteen pimeässä kulmassa. Oven avauksen vaiheet etenevät vasemmalta oikealle. Peruuta ensin kohti ovea. Avaa ovi selkäsi takana. Siirry sivuttain oviaukosta pitäen koko ajan liikkuva ovi selkäsi takana. Sulje ovi yhä selkäsi takana. 

Ulkona rakennusta kiertäessä on hyvä osoittaa laitetta rakennuksen kulman suuntaan. Voit myös pieneksi hetkeksi pysähtyä kulmassa, jolloin saadaan enemmän havaintoja kulman molemmin puolin olevista piirteistä (kuva 5).  Mikäli käytössäsi on ZEB HORIZON -laite, ei siirtymätavalla ole niin suurta merkitystä. Tämä johtuu laitteen suuremmasta mittausetäisyydestä (100 m) ja pistetiheydestä (300 000 pistettä/sekunnissa), jolloin piirteistä saadaan enemmän havaintoja nopeankin siirtymisien aikana kuin ZEB-REVO (RT) ja Go -laitteilla (30 m ja noin 43 000 pistettä/sekunnissa).

Kuva 5. Rakennuksen kulmissa kannattaa pysähtyä hetkeksi laitteen osoittaessa kohti kulmaa. 

Välttämällä liikettä ja kiiltoa ympäristössä, vältät ylimääräisen kohinan syntymisen

Käsikeilaimella mitatessa ja mittausta suunnitellessa kannattaa huomioida myös liikkuvat kohteet ja kiiltävät pinnat. Suorituksena on välttää liikkuvia kohteita (esimerkiksi ihmisiä ja liikennettä), mutta aina se ei ole mahdollista. Tällöin kannattaa ajoittaa mittaus ajankohtaan, jolloin liikettä on mahdollisimman vähän. Mikäli mittauksen aikana tapahtuu paljon liikettä, voi aineistoon aiheutua kohinaa ja ongelmia rekisteröinnissä. Erityisen tarkka kannattaa olla hitaan liikenteen kohdalla. Tämä saattaa aiheuttaa kohdistusvirheitä, joten vältä erityisesti hidasta liikennettä ulkona suoritetuissa mittauksissa.

Liikkuvien kohteiden lisäksi on hyvä välttää kiiltäviä pintoja, koska ne voivat aiheuttaa kohinaa pintojen läheisyyteen. Näitä pintoja ovat muun muassa peilit, vesi ja lasipinnat. Mittauksen aikana on suositeltavaa poistaa mahdollisimman monta kiiltävää pintaa. Poistamisen voit toteuttaa kolmella eri tavalla. Kiiltävän pinnan voi peittää esimerkiksi kankaalla. Kiillon määrää voi vähentää sulkemalla verhot ja muuttamalla valaistuksen hajavaloksi. Mikäli et voi aineiston käyttötarkoituksen vuoksi toteuttaa edellisiä vaihtoehtoja, voit aikatauluttaa mittaukset. Kiiltävistä pinnoista syntyy vähiten kohinaa, kun mittaus toteutetaan päiväsaikaan tai ajan hetkenä, jolloin ei ole suoraa auringon valoa.

Pysy aina alle 10 m (ZEB-REVO (RT) ja ZEB Go) tai alle 40 m (ZEB HORIZON) päässä piirteistä

Mittauksen aikana on aina hyvä pysyä mahdollisimman lähellä piirteitä/kohteita, jotta laitteen paikannus saa tarpeeksi havaintoja sijaintinsa määrittämiseen. Suositeltu mittausetäisyys piirteistä on alle 10 m (ZEB-REVO (RT) ja ZEB Go) tai alle 40 m (ZEB HORIZON) päässä keilaimesta (kuva 6).

Mittausetäisyyden lisäksi on aina hyvä suunnata keilain suoraan kohti piirrettä, jotta siitä saadaan varmasti havaintoja. Tämä on erityisen tärkeää, kun mitataan avoimia ympäristöjä kuten puistot, hallit, aulat ja salit. Mikäli näissä ympäristöissä on vähän piirteitä eli niitä ei ole ZEB-REVO (RT) ja ZEB Go -laitteille alle 10 m välein tai ZEB HORIZON -laitteelle alle 40 m välein, kannattaa kohteeseen lisätä piirteitä. Piirteiden suositeltu koko on noin kuutiometri, jotta se voidaan tunnistaa myös pidemmän matkan päästä. Mikäli et ole varma suoriutuuko laserkeilain näillä piirteillä, tee koemittaus. Yleisenä nyrkkisääntönä voidaan sanoa, että SLAM-paikannus selviää 5 s ilman piirteitä. Tämän jälkeen piirteiden puute voi näkyä aineistossa vääristymänä.

Kuva 6. Osoita keilain kohti piirteitä ja pidä piirteet aina alle 10 m päässä ZEB-REVO (RT) ja ZEB Go -laitteiden kanssa ja alle 40 m päässä ZEB HORIZON -laitteen kanssa. 

Varmista kävelytavalla avoimesta ympäristöstä kattavan pistepilven tuottaminen

Avoimissa ympäristöissä piirteiden läheisyyden lisäksi kannattaa huomioida kävelytapa. ZEB-REVO (RT) ja ZEB Go -laitteilla mittausetäisyys on 30 m, joten suuremmissa avoimissa tiloissa suurien silmukoiden sisään voi jäädä aukkoja ilman pistehavaintoja (kuva 7a).

Hyvällä suunnitelmalla voidaan kuitenkin välttää näiden aukkojen syntyminen. Lisäksi ZEB-REVO (RT) ja ZEB Go -laitteiden kanssa tulee muodostaa pienempiä silmukoita kohteiden ympärillä ja välttää suoraan kävelemistä (kuva 7b). Voit kuitenkin tarpeen tullessa kävellä suoraan  sisällä 30 m  tai ulkona 15 m.

ZEB HORIZON -laitteella mitatessa ei tarvitse olla yhtä tarkka kävelytavasta. Tämä johtuu laitteen suuremmasta mittausetäisyydestä ja pistetiheydestä (kuva 7c). On kuitenkin suositeltavaa kävellä ZEB HORIZON laitteella alle 100 m mittaisia matkoja suoraan (kuva 7d). Jos kohteessa täytyy tehdä silmukka pienemmän kohteen ympärillä ZEB HORIZON laitteella, on suositeltavaa tehdä silmukasta minimissään 5 m halkaisijan kokoinen (kuva 7c).

Kuva 7. Suurissa avoimissa tiloissa laite vaikuttaa mittausreittiin. a) ZEB-REVO (RT) ja Go -laitteilla täydennä lyhyempää mittausetäisyyttä silmukoilla, ettei aineistoon jää aukkoja ja b) kävele suoraan maksimissaan 15 m. c) ZEB HORIZON -laitteella ei ole tarvetta silmukoihin ja d) voidaan edetä suoraan pidempiä matkoja (alle 100m) (kuvan aineistot toteuttanut GeoSLAM) 

Koemittauksella voi varmistaa onko kapeassa ympäristössä tarpeeksi piirteitä tarkan pistepilven tuottamista varten

Käytävät voivat olla vähäpiirteisiä ja itseään toistavia ympäristöjä. Mikäli käytävän piirteet ovat alle suositellun kuutiometrin ja kauempana kuin 10 m, on syytä lisätä piirteitä ympäristöön. Käytävällä helppo tapa lisätä piirteitä on avata käytävän ovia. Avattujen ovien tiloissa ei tarvitse käydä, mutta niistä saadaan tarpeeksi piirteitä SLAM-paikannuksen avuksi (kuva 8a). Samoin kuin avoimissa tiloissa kannattaa käytävillä suorittaa koemittaus, jolla selvitetään riittävätkö olemassa olevat piirteet paikannukseen vai täytyykö lisätä vielä enemmän piirteitä. Koemittauksen aikana kannattaa myös kokeilla toimiiko kohteessa paremmin peruuttaminen, koska joskus lähin piirre voi olla keilaajan takana.  Koska aineiston kerääminen SLAM-laserkeilaimella on nopeaa, voi kohteessa helposti tehdä koemittauksen ja varsinaisen keilauksen käytettävissä olevan mittausajan puitteissa.

Kuva 8. Käytäviä mitatessa kannattaa a) avata ovia luomaan piirteitä muuten piirteettömälle käytävälle b) huomioida pistehavaintojen osumakulma, koska pienellä kulmalla pistepilven pistetiheys pienenee eli tasaisen pistetiheyden saamiseksi pyri mittaamaan kaikkialta samalla tavalla kierrellen. 

Käytävien lisäksi muissa kapeissa ympäristöissä kannattaa huomioida samat asiat kuin käytävissä. Lisäksi tunneleissa kannattaa kiinnittää huomiota tunnelin pintamateriaaleihin. Tunnelin pinta voi heijastaa heikosti lasersäteitä, jolloin havainnot jäävät pienemmiksi. Pintamateriaalin lisäksi havaintojen määrään vaikuttaa lasersäteen osumakulma kohteeseen. Osumakulman ollessa alle 15 astetta on havaintojen määrä vähäistä ja pistepilvestä tulee harva (kuva 8b). Lisäksi tunnelit kannattaa mitata pienemmissä osissa, jotta tunneli ei aiheuta rekisteröintiongelmia. Erityisen tärkeää on jakaa tunneli pienempiin osiin, jos mittausta ei voida suorittaa suljettuna kierroksena.

 Nostamalla keilainkorkeutta saadaan tiheämpi pistepilvi korkeista julkisivuista

Samalla tavalla kuin kapeissa tunneleissa tai käytävillä lasersäteen osumakulma vaikuttaa pistepilven tiheyteen.

Alle 15 asteen osumakulmalla pistetiheys on huomattavasti heikompi kuin suuremmilla osumakulmilla. Tästä syystä korkeita julkisivuja mitatessa, voidaan kasvattaa julkisivun yläosassa osumakulmaa nostamalla keilainta.

Keilain voidaan nostaa korkeammalle esimerkiksi kiinnittämällä se teleskooppitangon päähän. Tällöin osumakulma julkisivun yläosassa suurenee ja pistepilven tiheys kasvaa (kuva 9). Näin voidaan samalta etäisyydeltä mitatessa kerätä tiheämpää pistepilveä korkeiden julkisivujen yläosista.

GeoSLAM, seinän skannaaminen

Kuva 9. Pistehavaintojen osumakulma näkyy pistepilvessä helpoiten julkisivuissa. Alle 15 asteen osumakulmalla pistetiheys on heikompi kuin suuremmalla kulmalla. Osumakulmaa voi kasvattaa nostamalla keilaimen tangon päähän tai mittaamalla kauempaa, mikäli se on mahdollista. 

Vaikeakulkuisien tilojen mittaamiseksi GeoSLAM-laitteen voi kiinnittää erilaisiin alustoihin

Vaikeakulkuisia tai ahtaita tiloja ovat muun muassa kellarit, viemärit ja luolat. Ympäristö voi olla vaikeakulkuinen, koska sinne ei pääse jalan tai siellä ei voi muodostaa suljettua mittauskierrosta. Tällöin laite voidaan kiinnittää erilaisiin alustoihin kuten kauko-ohjattavaan robottiin, teleskooppitankoon tai kelkkaan. Näiden erilaisten alustojen avulla voidaan laite viedä vaikeakulkuiseen ympäristöön ja saadaan kattava pistepilvi myös näistä ympäristöistä. Mikäli vaikeakulkuiseen tilaan pääsee jalan, kannattaa mittaus suorittaa hitaasti kävellen ja siirtyä tilasta toiseen sivuttain tai takaperin.

Ahtaissa tiloissa pistepilveen vaikuttaa laitteiden pienin mittausetäisyys. Tämä mittausetäisyys on 20 cm ZEB-REVO (RT) tai ZEB Go -laitteilla ja 40 cm ZEB HORIZON -laitteella. Tästä syystä ZEB-REVO (RT) tai ZEB Go -laitteet saavat enemmän havaintoja ahtaissa tiloissa. Lisäksi ne ovat fyysiseltä kooltaan pienempiä, joten ne mahtuvat ahtaampiin ympäristöihin kuin ZEB HORIZON -keilain.

Mittauksen jälkeen, ahtaat tilat tulee huomioida myös aineiston prosessoinnissa. Tämä onnistuu muuttamalla prosessointi asetuksista “bounding box” kokoa pienemmäksi. “Bounding box” kattaa oletuksena ihmisen kokoisen alueen (kuva 10). Tämän sisällä olevat pisteet eivät tule mukaan pistepilveen, mutta ne säilyvät ohjelmiston muistissa.

GeoSLAM-mittaukset

Kuva 10. Oletus “bounding box” sisältää ihmisen kokoisen alueen. 

Tämän sisällä olevat pisteet jätetään pois pistepilvestä,
joten ahtaissa tiloissa täytyy pienentää “bounding box” kokoa.

Jos kohdetta ei saa kokonaan mitattua 20-30 minuutin aikana, jaa mittaus osiin

Mikäli ympäristön mittaaminen yhdellä GeoSLAM-mittauskierroksella ylittää 20-30 minuutin rajan, on suositeltavaa jakaa mittaus pienempiin osiin. Yhden 20-30 minuutin mittauskierroksen aikana voidaan mitata kävelynopeudella edetessä noin kahden kilometrin matka. Mittauksen osiin jakamisen tulee huomioida jo suunnitteluvaiheessa. Silloin tulee miettiä kuinka moneen erilliseen mittaukseen mittaus täytyy jakaa ja minne sijoitetaan erillisten mittausten välinen päällekkäisyysalue. Tällä päällekkäisyysalueella pitää olla mahdollisimman monta toisistaan tunnistettavaa piirrettä. Mittauksia suunnitellessa täytyy huomioida, että erillisten mittausten päällekkäisyysalueen tulee olla 30 % koko mittausalueesta. Päällekkäisyysalueen avulla voidaan jälkikäsittelyssä yhdistää erilliset mittaukset yhdeksi pistepilveksi esimerkiksi merge-työkalulla GeoSLAM Hub-ohjelmistossa.

Käytännössä on suositeltavaa aloittaa kaikki mittaukset samasta paikasta. Valitse aloituspaikka läheltä alueen keskikohtaa esimerkiksi monikerroksisessa rakennuksessa kannattaa aloittaa mittaus keskimmäisestä kerroksesta ja edetä sieltä eri mittauksina alas ja ylös (kuva 11). Lisäksi kannattaa sammuttaa laite jokaisen erillisen mittauskierroksen välissä. Laitteen sammuttaminen nollaa laitteen pistepilven pisteille antaman aikaleiman, jolloin niihin ei voi syntyä virhettä ja prosessointi on helpompaa.

GeoSLAM-mittaukset eri kerroksissa

Kuva 11. Neljä kerroksisen rakennuksen mittauksen voi jakaa neljään mittaukseen. Kerrosten mittaukset ovat merkitty väreillä: kellari turkoosilla, ensimmäinen kerros oranssilla, toinen kerros violetilla ja ullakko vihreällä. Kerroksien 1, 2 ja ullakko mittaukset aloitettiin samasta paikasta 2. kerroksesta ja kellarin mittaus aloitettiin 1. kerroksesta.

Käy nämä kysymykset läpi aina ennen mittausta

SLAM-laserkeilaimilla mittaaminen on helppoa, kun mittauksen suunnittelee ennakkoon ja pohtii vastaukset seuraaviin kysymyksiin.

  1. Onko mahdollista sulkea mittauskierros?
  2. Riittääkö kohteen mittaamiseen yksi maksimissaan 20-30 minuutin mittaus?
  3. Kuinka monella mittauksella alue saadaan kartoitettua ja missä on mittausten välinen päällekkäisyysalue?
  4. Ovatko piirteet koko mittauksen aikana alle 10 metrin (ZEB-REVO (RT) tai ZEB Go) tai alle 40 metrin (ZEB HORIZON) etäisyydellä laitteesta?
  5. Onko kohteessa kiiltäviä tai liikkuvia piirteitä?
  6. Voiko kohteen muoto aiheuttaa haasteita?

Hyvän suunnitelman kanssa voit huoletta mitata käsikeilaimilla. Muista kuitenkin aina ennen mittausta avata kaikki ovet, jotta suunniteltu mittauskierros on mahdollinen. Varmista mittauksen aikana mahdollisimman tarkka pistepilvi luomalla suljetun mittauskierroksen sisälle pienempiä silmukoita. Muista myös vaihtoehto kierrosten tekemiseen kerrosten välillä. Vältä suoraan kävelemistä, mutta pakon edessä voit kulkea alle 15 m (ZEB-REVO RT tai ZEB Go) tai alle 100 m (ZEB HORIZON) matkan suoraan. Varmista laitteen näkyvyys piirteisiin osoittamalla keilaimella niiden suuntaan ja pysymällä piirteiden läheisyydessä. On myös hyvä tunnistaa kohteet, jotka ovat SLAM-laserkeilaimelle haastavia kuten avoimet tilat, kapeat käytävät, korkeat julkisivut, liikkuvat kohteet ja kiiltävät pinnat. Tee aina koemittaus, jos et ole varma kuinka laite suoriutuu kohteesta. Koemittauksen jälkeen lisää piirteitä tarpeen mukaan, valitse sopivampi mittausalusta liian ahtaisiin tiloihin, vältä liikettä ja peitä kiiltävät piirteet. Näillä ohjeilla onnistut käsikeilaimilla tehtävistä mittauksista. Luo siis hyvä suunnitelma, tee koemittaus ja toteuta varsinainen mittaus tarkasti suunnitelman ja paikalla tehtyjen havaintojen pohjalta.

Trimble MX9 -mobiilikartoitusjärjestelmä tutuksi – Osa 3: Trimble MX9-järjestelmän operointi

Kirjoittaja: Sakari Mäenpää

Tässä blogisarjassa tutustutaan Trimblen MX9-mobiilikartoitusjärjestelmään, sen ominaisuuksiin, operointiin ja käyttösovelluksiin. Sarjan kolmannessa osassa käsitellään tiedonkeruuta eli järjestelmän operointia TMI-ohjelmistolla.

Mobiilikartoituksen työnkulku tiedonkeruusta valmiiksi lopputuotteiksi on suoraviivainen prosessi, jossa hyödynnetään useita eri sovelluksia (Kuva 1). Tiedonkeruun jälkeen ajoneuvon liikerata prosessoidaan POSPac -ohjelmistossa hyödyntämällä jälkilaskentaa ja Trimnet-tukiasemadataa. Tämän jälkeen tuotetaan värjätty ja georeferoitu pistepilvi Trimble Business Centerissä. Tarpeista riippuen pistepilven jatkojalostamiseen ja varsinaisten lopputuotteiden tekemiseen on useita vaihtoehtoisia sovelluksia, joista yleisimpiä TBC:n lisäksi ovat Terrasolidin ja Trimble MX -ohjelmistot.

Kuva 1. Mobiilikartoituksen työnkulussa hyödynnetään useita eri ohjelmistoja.

Edellistä sukupolvea edustavan MX8 -järjestelmän operointi edellytti usean tietokoneen, ohjelman ja näytön järjestelmää, joka täytti ison osan auton tavaratilasta (Kuva 2). Trimble MX9 -järjestelmässä käytetään TMI (Trimble Mobile Imaging) -ohjelmistoa, joka on tuttu kuvapohjaisesta MX7-järjestelmästä ja on käytössä myös juuri esitellyssä MX50-järjestelmässä. Yhtenäinen käyttöliittymä suoraviivaistaa ja yksinkertaistaa eri järjestelmien käyttöä. Kun osaat yhden Trimblen mobiilikartoitusjärjestelmän käytön, on helppo siirtyä käyttämään toista järjestelmää, koska käyttölogiikka on kaikissa samanlainen. Nykyaikaisen mobiilikartoitusjärjestelmän operointi sujuu mittausalan ammattilaiselta lyhyen perehdytyksen jälkeen.

Kuva 2. Edellisen sukupolven MX8 vaati ison tietokonejärjestelmän (vasemmalla), mutta MX9:n operointiin riittää tabletti.

TMI on nykysuuntauksen mukaisesti selainpohjainen (Kuva 3), joten mitään ohjelmia ei tarvitse asentaa tietokoneelle, vaan sovellus on asennettu MX9:n kontrolliyksikköön. Käyttöliittymänä kontrolliyksikköön ja TMI-ohjelmistoon voidaan käyttää mitä tahansa selaimella varustettua päätelaitetta, joka tyypillisesti on kannettava tietokone tai tabletti. Hätätapauksessa myös älypuhelimella on mahdollista operoida järjestelmää, mutta tässä tapauksessa näytön koko asettaa omat haasteet käytettävyydelle. Vaikka MX9-järjestelmän operointi on helppoa, turvallinen käyttö vaatii kaksi henkilöä: kuljettaja keskittyy auton ajamiseen ja operaattori järjestelmän operointiin.

Kuva 3. TMI on helppokäyttöinen selainpohjainen sovellus MX9:n operointiin.

Käytettävä päätelaite liitetään kontrolliyksikköön joko wifi-yhteydellä tai ethernet-kaapelilla. Kontrolliyksikkö muodostaa kaksi wifi-verkkoa, joista toista käytetään päätelaiteyhteyteen ja toisen avulla kontrolliyksikkö voi muodostaa internetyhteyden hotspotin kautta. Internetyhteyttä tarvitaan esimerkiksi online-taustakarttojen käyttämiseen TMI:ssä.

Ennen varsinaisen mittaustehtävän aloittamista syötetään ajoneuvon perustiedot ja luodaan tarvittaessa tiedonkeruuta varten parametrit. Nämä ovat usein kertaluonteisia työvaiheita samaa ajoneuvoa käytettäessä ja samantyyppisissä projekteissa. Asennuksen yhteydessä on mitattu järjestelmän korkeus sekä mahdollisten lisälaitteiden (GAMS, DMI) asema järjestelmän 3D-koordinaatistossa. Nämä tiedot syötetään ohjelmistoon luomalla ajoneuvoprofiili, joka valitaan tiedonkeruun alussa. Tiedonkeruussa on mahdollista käyttää ennalta luotuja vakioprofiileja tai luoda omat mittausasetukset kameroille ja laserkeilaimille (Kuva 4).

Kuva 4. Asetuksissa voidaan määrittää kameroiden kuvanottoväli ja laserkeilaimien mittausasetukset.

Kun asetukset on syötetty, luodaan mittaussessio antamalla sille nimi ja valitsemalla ajoneuvoprofiili ja käytettävät mittausasetukset. Mittaussession alussa paikannusjärjestelmä ei ole alustettu (Kuva 5) ja tämä edellyttää tyypillisesti muutaman minuutin ajoa hyvässä GNSS-ympäristössä. Ajoon sisällytetään ajomanöövereitä, kuten voimakkaampia kiihdytyksiä, jarrutuksia sekä käännöksiä, jotka nopeuttavat alustuksen saamista. Paikannustiedon tallennus käynnistyy automaattisesti mittaussession luonnin yhteydessä, kunhan riittävä määrä satelliitteja on mukana ratkaisussa.

Kuva 5. Mittaussession alussa GNSS/IMU-järjestelmä ei ole alustettu, mikä ilmenee punaisena navigointikuvakkeena sivupalkissa oikealla.

Kun järjestelmä on alustettu, muuttuu navigointikuvake vihreäksi ja sitä painamalla saa tarkempaa tietoa paikannuksen tilasta (Kuva 6). Navigointikuvake pysyy vihreänä, kunhan kaikki neljä indikaattoria ovat vihreällä alueella. Järjestelmä on nyt valmis sensoritiedon tallennukseen.

Kuva 6. Navigointikuvake on vihreä ja järjestelmä on valmis tiedon tallennukseen. Oikean alakulman tallennuspainikkeella käynnistyy sensoridatan tallennus.

Kun järjestelmä on alustettu ja valmis tiedonkeruuseen, operaattori käynnistää ja lopettaa sensoridatan tallennuksen painamalla oikean alakulman tallennuspainiketta (Kuva 7). Sijaintitiedon tallennus jatkuu automaattisesti niin kauan kuin järjestelmä on käynnissä eikä operaattori pysty siihen vaikuttamaan. Tallennus kannattaa jakaa loogisiin osiin eli runeihin (run) esimerkiksi kaduittain tai alueittain, mikä helpottaa datan jatkokäsittelyä. TMI-ohjelmiston karttaikkunassa kulku-ura näkyy paksulla viivalla, jos sensoridatan tallennus on ollut käytössä.

Tiedonkeruun aikana operaattori voi tarkkailla paikannustiedon lisäksi sensoridataa eli kameroiden kuvia tai laserkeilaimien profiileja ja varmistaa onnistuneen tiedonkeruun ja kuvien oikean valotuksen. Navigointikuvake voi hetkellisesti muuttua vihreästä oranssiksi, mutta tämä ei aiheuta toimenpiteitä tiedonkeruussa. Jos järjestelmää operoidaan huonossa GNSS-ympäristössä, esimerkiksi suurempien kaupunkien keskustojen katukuiluissa tai puuston varjostamilla alueilla, kannattaa tiedonkeruun aikana käydä säännöllisesti hyvässä GNSS-ympäristössä hakemassa hyvä GNSS-ratkaisu.

Tiedonkeruun aikana operaattorilla on mahdollista syöttää kommentteja, jotka tallentuvat aikaleimattuna mittaustietokantaan. Esimerkiksi tiedonkeruun aikana olosuhteissa tapahtuneet muutokset tai muut huomionarvoiset tapahtumat voidaan näin tallentaa tiedoksi aineiston käsittelijälle. Session aikana, tallennusjaksojen välissä, on myös mahdollista muuttaa mittausasetuksia, joten samaan sessioon on mahdollista tallentaa eri parametreilla kerättyä tietoa. Järjestelmän alustusta ei näin tarvitse tehdä uudestaan.

Kuva 7. Sensoridatan tallennus on päällä, joten oikean alakulman tallennuspainike on punainen ja karttaikkunassa ajorata piirretään paksulla viivalla. Operoinnin aikana operaattori voi tarkastella sensoreiden tuottamaa raakadataa.

Kun tiedonkeruu on valmis, lopetetaan mittaussessio ja ajetaan järjestelmä hallitusti alas ennen virran sammuttamista. Kaikki tieto mittaussession aikana on tallentunut kontrolliyksikön (Kuva 8) kahdelle irrotettavalle SSD-levylle. Jos järjestelmään kuuluu varalevyt, voidaan nämä vaihtaa tilalle ja jatkaa tiedonkeruuta keskeytyksettä ja aloittaa datan käsittely.

Kuva 8. Mittausaineisto tallentuu kontrolliyksikön kahdelle SSD-levylle (5). Levyt voidaan irrottaa ja vaihtaa uusiin, jolloin aineiston käsittely voidaan aloittaa ja jatkaa tiedonkeruuta.

Blogisarjan seuraavassa osassa käsitellään kulku-uran laskentaa ja pistepilviaineiston tuottamista.

GeoSLAM-pistepilvestä koordinaatistoon

Kirjoittaja: Aino Keitaanniemi

Sisätiloissa ja maan alla, jossa satelliittipaikannus on vaikeaa, voidaan kerätä pistepilviä GeoSLAM-laitteistoilla. Nämä mobiililaserkeilaimet hyödyntävät paikantamiseensa SLAM-algoritmia, joten ne toimivat myös paikoissa, joissa satelliittipaikannuksessa on puutteita. Tästä johtuen GeoSLAM-laitteilla luodut pistepilvet ovat automaattisesti täysin satunnaisessa koordinaatistossa mittauksen aloituspaikkaan nähden. Useissa käyttötarkoituksissa on kuitenkin tärkeää saada pistepilvi todelliseen koordinaatistoon. Tämä voidaan toteuttaa lisäämällä aineiston keruuseen tähyspisteitä monilla eri tavoilla.

Tähykset voivat olla tyypiltään pallotähyksiä, shakkiruututähyksiä tai tunnettuja pisteitä (esimerkiksi naula), jos hyödynnät keilaimeen kiinnitettäviä referenssitasoja. Referenssitason avulla voidaan GeoSLAM-laite kohdistaa tähyksen tai koordinaateiltaan tunnetun pisteen kohdalle. Pallotähyksiä ja referenssitasoa voidaan käyttää kaikilla GeoSLAM-laitteilla. Ainoastaan shakkiruututähykset poikkeavat tästä. Niitä voidaan käyttää vain ZEB Horizon -keilaimen kanssa, koska laite kerää myös intensiteettitiedon (kuva 1). Tämä mahdollistaa shakkiruututähysten tunnistamisen pistepilviaineistosta.

Kuva 1 Kaikkia GeoSLAM-laitteita voidaan georeferoida pallotähysten ja referenssitason avulla, mutta GeoSLAM ZEB Horizonin kanssa toimii myös shakkiruututähykset.

Tähysten tyypistä huolimatta georeferoinnissa eli globaaliin koordinaatistoon sitomisessa hyödynnetään samoja periaatteita. Tähyspisteet ovat pisteitä, joiden globaalit koordinaatit tunnetaan. Tämä tieto voidaan kerätä esim. GNSS-vastaanottimella tai takymetrilla. Jotta tähyspisteillä voidaan georeferoida pistepilvi mahdollisimman tarkasti, tulee tähyspisteitä asentaa kohteeseen vähintään kolme mahdollisimman kattavasti. Paras georeferointitulos saadaan, kun koordinaattipisteet ovat mahdollisimman isolla pistepilven alueella. Useammilla tähyspisteillä voidaan ensin sitoa pistepilvi globaaliin koordinaatistoon. Tämän jälkeen pisteitä, joita ei käytetty georeferoinnissa, voidaan käyttää tarkastellaksemme georeferoinnin tarkkuutta. On siis aina hyvä kerätä mahdollisimman monta georeferointipistettä.

Georeferointi mittauksen aikana

Georeferoidessa GeoSLAM-laitteella kerättyä pistepilveä, tulee georeferoiminen  huomioida jo mittauksen aikana. Ennen mittausta täytyy kohteeseen asentaa tähyspisteet ja mitata niiden globaalit koordinaatit. Esimerkiksi pihapiirissä (kuva 2) tähyksiä asennettiin yhteensä viisi ja ne mitattiin GNSS-vastaanottimella. Tämän jälkeen toteutetaan GeoSLAM laitteella mittaus. Mittauksen aikana varmistetaan tähysten kattava näkyvyys pistepilvessä. Tämä onnistuu osoittamalla laitetta kohti tähystä ja esim. pallotähysten kohdalla kiertämällä tähyksen ympäri. Muilta osin GeoSLAM mittaus voidaan tehdä normaalisti.

Kuva 2. Tähyspisteitä tarvitaan vähintään kolme ja ne tulee sijoitella mittausalueelle mahdollisimman kattavasti.

Referenssitason kanssa mitatessa toimintatapa eroaa hieman. Tällöin GeoSLAM laite lasketaan tähyksen kohdalle noin 10 sekunniksi. Tämän seurauksena laite luo automaattisesti pisteen tähyksen kohdalle. Tähän automaattiseen pisteeseen voidaan yhdistää erikseen mitattu globaali koordinaatti GeoSLAM Hub -ohjelmistossa. Referenssitasoa käyttäessä täytyy huomioida, että taso on laitekohtainen. Tällä tarkoitetaan sitä, että ZEB Revo/Go käyttää eri referenssitasoa kuin ZEB Horizon (kuva 3). Laitekohtainen referenssitason ja laserkeilaimen keskipisteen välinen sijaintiero määrittyy ohjelmistossa automaattisesti tunnistamansa laitteen pistepilven mukaan. Mikäli käytössä olisi laitteelle väärä referenssitaso, olisi georeferoinnin tuloksessa automaattisesti virhe tämän sijaintieron vuoksi. Lisäksi tähysten sijoittelu täytyy huomioida laitteittain. ZEB Revo/Go -laitteilla referenssitasolla mitattavien tähysten tulee olla vaakapinnoilla.

Kuva 3. ZEB Revo RT ja ZEB Horizon käyttävät eri referenssitasoa. Älä siis käytä tasoja ristiin.

Tähyspisteiden tyyppien edut

Koska georeferointitapoja on monia, kannattaa valita menetelmä kohteen ja siitä tuotetun aineiston käyttötarkoituksen mukaan. Mikäli aineisto halutaan georeferoida, mutta pistepilvessä ei saisi näkyä tähyksiä, paras vaihtoehto on käyttää referenssitasoa. Referenssitasolla voidaan merkitä aineistoon pienetkin tähykset esimerkiksi naulan kannat. Toisaalta pallotähyksiä voidaan myös käyttää georeferoinnissa ja poistaa ne sen jälkeen pistepilvestä. Pistepilvestä tähyksen poistamisen suhteen shakkiruututähykset ovat vaikeimpia, koska ne tulee asettaa tasopinnoille ja sen seurauksena tähyksen poistaminen poistaa sen kohdalta myös kaikki pistehavainnot.

Mittaamisen aikana pallotähysten etu on se, että tähys on kaikista suunnista katsottuna samanlainen. Tästä syytä kattavan aineiston saaminen pallotähyksestä on suhteellisen helppoa. Jotta pallotähys voidaan tunnistaa, riittää että pallosta on suurin osa havaittu keilauksen aikana. Kun tähän verrataan shakkiruututähystä, vaatii sen mittaaminen enemmän keskittymistä aineistoa luodessa.  Keilauksen aikana on mahdollista jättää shakkiruututähyksiä havainnoitta, koska ne ohitettiin liian nopeasti tai ne jäivät osittain laitteen pimeän kulman taakse. Kohdista siis laite suoraan tähystä kohden, jotta varmistat havainnot ja tähyksen tunnistamisen.

Hyvin mitatusta pistepilvestä voidaan useissa kolmannen osapuolen ohjelmistoissa (Kuten Trimble RealWorks) tunnistaa automaattisesti sekä pallo- että shakkiruututähyksiä. Automaattisen tunnistamisen jälkeen kannattaa tarkistaa tunnistetut tähykset, jotta mahdolliset virhetunnistamiset huomataan. Tämän jälkeen tähyspistehavaintoihin voidaan yhdistää georeferoinnin koordinaatit ja siirtää pistepilvi haluttuun koordinaatistoon.

Referenssitason kanssa georeferoidessa voidaan käyttää tähyksinä luonnollisia piirteitä kuten tasojen kulmia sisällä ja tiemaalauksia ulkona. Tämä on mahdollista, koska mittauksen aikana käyttäjä kohdistaa referenssitason ristikon tähyksen keskipisteeseen ja laite luo automaattisesti kyseiselle kohdalle tähyspisteen pistepilveen. Näihin automaattisesti luotuihin tähyspisteisiin voidaan yhdistää globaalit koordinaatit suoraan GeoSLAM Hub-ohjelmistossa pistepilven prosessoinnin aikana. Eli georeferointi onnistuu referenssitason kanssa yhdessä ohjelmistossa. Näistä syistä referenssitasolla voidaan säästää aikaa georeferoinnissa, koska tähyksiä ei välttämättä tarvitse asentaa kohteeseen kuten pallo- tai shakkiruututähyksiä ja prosessointi voidaan toteuttaa kokonaan yhdessä ohjelmistossa. Lisäksi referenssitaso antaa joustavuutta luonnollisten tähysten ja kontrollipisteiden koordinaattien mittaamiselle, koska niiden koordinaatit voidaan mitata joko ennen SLAM-mittausta tai sen jälkeen.

Joissakin tilanteissa georeferointimenetelmien yhdistämisestä saadaan etuja. Ulkona voidaan esimerkiksi yhdistää shakkiruututähykset ja referenssitaso. Kuvassa 4 on yhdistetty GeoSLAM Horizon referenssitason ja Aeropoints-tähyksien kanssa. Tässä yhdistyvät laitteiden parhaat puolet. Aeropoints-tähykset keräävät itsessään tiedon omasta globaalista koordinaatistaan, joten näitä tähyksiä käyttäessä ei tarvitse erikseen mitata tähysten sijainteja esimerkiksi GNSS-vastaanottimella. Referenssitasolla havaittu Aeropoints-tähys luo tähyksen kohdalle automaattisen tähyspisteen pistepilveen, joten Aeropoints tähyksen keräämä sijaintitieto on helposti yhdistettävissä automaattiseen GeoSLAM-tähyspisteeseen.

Kuva 3. ZEB Horizon Aeropoints-tähyksen päälle asetettuna.

GeoSLAM-laitteiden georeferoinnissa hyödynnetään samoja periaatteita kuin muidenkin pistepilvien kanssa. Koordinaattipisteitä tulee olla vähintään kolme ja niiden tulee sijoittua mahdollisimman laajasti pistepilven alueella. Lisäksi on aina hyvä kerätä enemmän kuin minimivaatimus  tähyshavaintoja. Ylimääräisillä havainnoilla voi tarkastella georeferoinnin tarkkuutta. Globaalit koordinaattipisteet voidaan merkitä erilaisilla tähyksillä tai ne voidaan mitata GeoSLAM-pistepilveen referenssitasolla. Kun pistepilvesi sisältää georeferointiin tarvittavat tähykset ja niille on erikseen mitattu koordinaatit, voidaan georeferointi toteuttaa missä tahansa pistepilviohjelmistossa. Valitse siis käyttötarkoituksesi ja käytössäsi olevan laitteen mukaan sille sopiva georeferointimenetelmä.

Kirjoittaja

Aino Keitaanniemi, DI

GeoSLAM ZEB-HORIZON

Käsikeilain

GeoSLAM ZEB-REVO RT

Käsikeilain

Pieni piste – pistepilvien molekyyli

Kirjoittaja: Tom Steffansson

Pistepilvien tuotannossa käytetään suureellisia termejä. Laserkeilaushanke, keilausprojekti, pistepilvi, keilausdata jne. Tietysti näin. Suuren tietomäärän vuoksi pienikin pistepilviprojekti on tavallaan iso. Pienissäkin aineistoissa lähdetään liikkeelle miljoonista pisteistä ja isoissa pyöritään miljardeissa. Isot kokonaisuudet pyörivät mielessä. Pienet purot yhtyvät suureksi joeksi, mutta pienikin puro muodostuu yksittäisistä vesimolekyyleistä, ja nekin voidaan pilkkoa osiin. Niin voidaan pistepilven molekyylikin, yksi pieni piste, jonka koostumus voi vaihdella paljon verrattuna H2O-molekyylin muutamaan atomiin. Tuleeko pistepilviaineistojen käyttäjille koskaan mieleen tutustua tarkemmin yhteen pikkuruiseen pisteeseen, joka on miljoonien samankaltaistensa joukossa? Sen sisältämä moninainen ominaisuustieto saattaa yllättää. Perinteisessä mittauksessa standardin maineen saanut GT-formaatti kalpenee attribuuttikenttiensä puolesta verrattuna laserkeilauksen yleisimpien formaattien, kuten LAS ja LAZ, tukemiin attribuutteihin.

Tarkastellaan aihetta käytännöllisesti.

Liikkuvilla laitteilla tuotetut pistepilvet sisältävät yleisesti tiettyjä vakioattribuutteja kuten aikaleiman, intensiteetin, kaiun numeron ja kaikujen lukumäärän, peilikulman sekä keilannumeron. Jotkut sensorijärjestelmät saattavat tuottaa attribuutteja, jotka ovat käytössä vain sen omassa post-prosessointi ohjelmistossa.

Jotta tämä ei olisi liian yksinkertaista, pikkuruinen piste saa jatkokäsittelyssä lisää kuormaa kannettavakseen. Laskenta-algoritmit tuottavat eri luokittelutarkoituksiin uusia arvoja pisteille, joita voidaan jatkoprosessoinnissa hyödyntää. Esimerkiksi saadaan fotogrammetrisen pistepilven käsittelyssä luotettavampi maanpinta. Tunnelin lattia-, seinä- ja kattopinnat luokittuvat paremmin. Yksittäisten objektien manuaalinen luokittelu nopeutuu ryhmänumeroinnin ansiosta, muutamia esimerkkejä mainitakseni.

Tarkastellaan Terrasolidin TerraScan-sovelluksen roolia aiheessa olennaisilta osilta:

TerraScan-sovelluksen rooli ja attribuutit

TerraScanin tavalla tai toisella tukemat attribuutit ovat alla listattuna. Lihavoitettuna ovat  attribuutit, joita vain TerraScanin Fast Binary Format (FBI) tukee verrattuna ns. standardeihin formaatteihin.

  • pisteluokka
  • lentoratanumero
  • aikaleima
  • kaikutyyppi
  • intensiteetti
  • Rieglin extra-bitti: pulssin muotovaihtelu, heijastavuus, kaiun pituus, kaiun poikkeavuus
  • RGB-värit
  • HSV-värit
  • keilauskulma pystysuorasta
  • kaiun numero
  • skannerin numero
  • kaiun pituus
  • kaiun sijainti
  • peilikulma
  • käyttäjän data
  • etäisyys esim. maanpintaan tai vektorielementtiin (muodostuu käsittelyssä)
  • ryhmänumero (muodostuu käsittelyssä)
  • pisteen värjänneen kuvan numero (muodostuu käsittelyssä)
  • normaalivektori (muodostuu käsittelyssä)
  • kasvillisuusindeksi (muodostuu käsittelyssä)

Käyn läpi eräitä yleisimpiä attribuutteja, joita esiintyy lähtödatassa ja joita syntyy prosessoinnin tuotteena normaalissa prosessointityöskentelyssä, jossa melko rutiininomaisesti tuotetaan hyviä ja toimivia lopputuotteita, menemättä käsittelyssä aivan äärimmäisyyteen. Äärimmäisyydellä tarkoitan sitä, että otetaan olemassa olevasta ja lasketusta tiedosta kaikki mahdollinen irti, haluttaessa automaattisesti niin hyvä lopputulos kuin mahdollista.

Aikaleima

Tallentuu ilma- ja mobiili- ja käsikeilauksessa laserpisteille sekä lento-, ajo- ja kävelyradoille. Aikaleimaa käytetään mm. ratanumeron päättelyssä laserpisteille. Aikajärjestelmä yleensä standardi GPS-aika tai GPS-viikkoaika. Aikaleimat voidaan konvertoida toiseen aikajärjestelmään.

Kaikutyyppi

Yksi ammuttu lasersäde voi antaa useita heijastumia takaisin. Osa säteestä osuu esim. puun lehvästön ensimmäiseen pintaan (First echo). Osa säteestä, koska säteen footprintti leviää ilmakehän molekyylien takia, jatkaa matkaa ja heijastuu edelleen lehvästön pinnasta (Intermediate echo) (näitä osumia voi skannerista riippuen tallentua useampiakin). Viimeinen heijastuma (Last echo) on todennäköinen maanpinta tai voi myös olla kohde maanpinnan yläpuolella, josta säde ei enää jatku eteenpäin. Tiheä lehvästö voi antaa vain yhden heijastuman (Only echo). Kaikutiedolla voidaan luokitella potentiaaliset maanpinnan osumat ennen lopullista maanpinnan luokittelua. Potentiaalisia maanpinnan osumia ovat luonnollisesti Last of many ja Only echo -kaiut. Intermediate kaiut ovat First ja Last of Many kaikujen välissä.

Yhdestä laserpulssista palautuneet heijastumat ylä- ja leikkausnäkymässä.

 

Etäisyys esim. maanpintaan tai vektorielementtiin

Aikaisemmin maanpinnan yläpuoliset pisteet suhteellisella korkeudella maanpinnasta luokiteltiin vertaamalla pisteiden pystysuoria etäisyyksiä maanpinnan pintamalliin. Uudemmassa vastaavassa luokittelussa pisteille lasketaan ensin pystysuora etäisyysattribuutti. Tämän jälkeen maanpinnan yläpuoliset pisteet luokitellaan etäisyydellä maanpinnasta tuon attribuuttitiedon avulla. Tyypillisesti matala-, keskikorkea ja korkea kasvillisuus. Etäisyys voidaan laskea myös muilla periaatteilla. Esimerkiksi 3D-etäisyys vektorielementtiin kuten ilmajohtoihin.

Etäisyysvärjäys pisteillä maan pinnasta, joka on samalla värjätty intensiteettiarvoilla.

 

Ryhmänumero

TerraScan määrittää ryhmänumerot erillisille pistepilvimuodostumille, kuten kadun kalusteille, rakennusten pinnoille, muille objekteille ja puustolle. Tämä auttaa mainittujen kohteiden automaattiluokittelussa ja nopeuttaa myös objektien manuaalista luokittelua. Osoittamalla esim. liikennemerkin yhtä pistettä, kaikki kyseisen liikennemerkin pisteet luokittuvat liikennemerkkiluokkaan. Olettaen tietysti, että ryhmänumeroiden määrittelyssä tietyn objektin pisteille toiminto on päätellyt saman ryhmänumeron. Ryhmiä voidaan yhdistellä ja tuhota.

Ryhmävärjäyksellä yksittäiset kalusteet ja puusto erottuvat kukin omana ryhmänä.

 

Pisteen värjänneen kuvan numero

Pisteen värjäyksessä käytetyn kuvan numero vihreällä kuullotetussa sarakkeessa.

 

Normaalivektori

Arvo, joka kuvaa pinnasta kohtisuoraan lähtevän vektorin suuntaa. Ohjelma hyödyntää sitä eri rakenteiden pintojen luokittelussa. Käytetään mobiilikeilattujen tienpintojen uraisuuden ja muiden epämuodostumien kohtien analysointiin. Alla olevassa kuvassa kattopintojen pisteillä normaalivektorivärjäys. Esim. automaattisesti vektoroitujen rakennusten tarkastamisessa operaattori ymmärtää paremmin top-näkymässä katon muodot.

Interaktiivisessa työskentelyssä rakennuksen kattojen osat erottuvat selkeästi.

 

Kasvillisuusindeksi

Tallentuu etäisyys-attribuutiksi, kuten esimerkiksi maanpinnan yläpuolisten pisteiden kohtisuorat etäisyydet maanpintaan. Kasvillisuusindeksin avulla saadaan erityisesti fotogrammetristen pistepilvien maanpinnan luokittelussa luotettavampi lopputulos. Pistepilvi voidaan värjätä kasvillisuusindeksillä. TerraScan voi määrittää kymmenen värikanavaa joka pisteelle. Mikäli kuvilla on myös infrapunavärit, tällöin niillä on neljä värikanavaa: R G B NIR. Infrapunakanavan avulla saadaan luotettavimmat kasvillisuusindeksiarvot.

Kasvillisuusindeksillä värjätyt pisteet. Vihreä väri ei potentiaalista maanpintaa.

Katsotaan mitä standardiattribuutteja eri sensorijärjestelmät normaalisti tallentavat loppuprosessointiin exportattaville pisteille ja mitä syntyy lisää TerraScanin käsittelyssä.

Ilmakeilauksen pisteillä on tyypillisesti seuraavat alkuperäiset attribuutit:

  • XYZ
  • aikaleima
  • kaikutiedot
  • intensiteetti
  • peilikulma

Jatkokäsittelyssä pisteelle syntyy mm. seuraavia attribuutteja

  • luokittelun tuloksena pisteluokkanumero
  • RGB-värit, jos ilmakuvat käytettävissä
  • lentoratanumero
  • pisteiden etäisyys maanpintaan tai muuhun kohteeseen
  • kasvillisuusindeksi
  • normaalivektori
  • ryhmänumero

Käsikeilauksen pisteillä on tyypillisesti seuraavia attribuutteja:

  • XYX
  • aikaleima
  • intensiteetti
  • RGB-värit, jos keilain varustettu kameralla

Jatkokäsittelyssä pisteelle syntyy mm. seuraavia attribuutteja

  • luokittelun tuloksena pisteluokkanumero
  • kävelyratanumero
  • pisteiden etäisyys maanpintaan tai muuhun kohteeseen
  • normaalivektori
  • ryhmänumero

Fotogrammetrisilla pisteillä on tyypillisesti seuraavat attribuutit:

  • XYX
  • RGB-värit

Jatkokäsittelyssä pisteelle syntyy mm. seuraavia attribuutteja

  • luokittelun tuloksena pisteluokkanumero
  • pisteiden etäisyys maanpintaan tai muuhun kohteeseen
  • kasvillisuusindeksi
  • normaalivektori
  • ryhmänumero

Maakeilauksen pisteillä on tyypillisesti seuraavat attribuutit:

  • XYZ
  • intensiteetti
  • RGB-värit, jos keilain varustettu kameralla

Jatkokäsittelyssä pisteille syntyy mm. seuraavia attribuutteja

  • luokittelun tuloksena pisteluokkanumero
  • keilausaseman numero, voi tulla laitteesta riippuen automaattisesti
  • normaalivektori
  • ryhmänumero

Eri menetelmillä tuotettujen pistepilvien sisältämiä attribuutteja voidaan käyttää sellaisenaan hyväksi ja uusien tietojen laskemiseen. Näitä taas voidaan edelleen käyttää luokittelussa parantamaan lopputulosta ja helpottamaan lopputuotteiden prosessointia. Attribuuttien perusteella pisteiden värjääminen auttaa paremmin havainnollistamaan pistepilveä interaktiivisessa työskentelyssä.

Yksittäisen laserpisteen sisältämä tietomäärä on verrattaen suuri. XYZ-koordinaatit ovat vain osa siitä tiedosta mitä tarvitaan prosessoitaessa aineistoa lopputuotteiden tuottamista varten. Minullakin on vielä aukkoja attribuuttitietämisessä, vaikka olen ollut pistepilvien kanssa tekemisessä yli kaksikymmentä vuotta. Kun saatte pistepilviainestoa, olkaa uteliaita. Katsokaa mitä se sisältää ja ottakaa siitä kaikki hyöty irti.

Kirjoittaja:

Tom Steffansson
Myynti-insinööri, Mobiilikartoitus

020 7510 649

tom.steffansson (at) geotrim.fi

Lisää artikkeleita Tompalta:

Laserkeilausohjelmistojen kehitystä seuraamassa – Tompan kokemuksia

Kirjoittaja: Tom Steffansson Koska laserkeilaus laitteineen ja ohjelmistoineen kehittyy koko ajan, tulee joskus muisteltua, mitä...

Lue blogi

UAV/LiDAR-teknologia yleistyy. Nyt on hyvä aika investoida uuteen teknologiaan.

RGB-kameralla on vankka asema perussensorina UAV-maanmittaussovelluksissa. Sen valta-asema tuskin lähivuosina tulee horjumaan, mutta LiDAR-tekniikan hyödyntäminen kiinnostaa yhä useampia. Uusien laitevaihtoehtojen myötä ominaisuudet ovat entistä monipuolisempia, kokoluokka pienempi ja hintataso sellainen, joka mahdollistaa investoinnin kaikille mittaustyötä tekeville. Vuodesta 2021 voi hyvinkin tulla UAV/LiDAR-teknologian läpimurtovuosi.

Kameratekniikka yhdistettynä fotogrammetriseen työnkulkuun on joustava menetelmä 3D-tiedon tuottamiseen dronetekniikalla. Käytettäessä laadukasta kameraa ja objektiivia valokuvista tuotettujen 3D-lopputuotteiden laatu on myös korkea. Laadukkaatkin kamerasensorit ovat kohtuullisen edullisia ja niillä tuotetut valokuvat monikäyttöisiä ja helposti omaksuttavia. Mihin siis LiDAR-teknologiaa tarvitaan?

LiDAR-tekniikka dronemaailmassa ei ole uusi asia ja kaupallisia tuotteita on ollut saatavana jo pitkään. Järjestelmien painoluokka on vaatinut operointiin järeän kokoluokan dronen ja siitä huolimatta operointiaika on jäänyt lyhyeksi. Myös hintataso on tehokkaasti karsinut potentiaalisia ostajakandidaatteja, huolimatta menetelmän eduista.

UAV/LiDARiin liittyy samat elementit kuin miehitetyllä kalustolla, ainoastaan mittakaava on pienempi.

Kamera ja LiDAR täydentäviä tekniikoita

Kamera ja laserkeilain eivät ole kilpailevia menetelmiä, vaan molemmilla on omat vahvuutensa ja usein paras lopputulos saadaan hyödyntämällä molempia tekniikoita. LiDAR:in vahvuuksia on useita, joista usein mainitaan sen kyky tunkeutua puuston ja aluskasvillisuuden läpi, jolloin myös peitteisellä alueella saadaan kova maanpinta luotettavasti luokiteltua samalla kun puusto yhdessä muiden kasvillisuuden seassa olevien kohteiden ohella tulee mallinnettua.

LiDARIN kyky tunkeutua kasvillisuuden läpi on yksi sen tärkeimmistä ominaisuuksista. Maanpinta saadaan luotettavasti määritettyä.

LiDAR ei vaadi valoa, jolloin operointi on mahdollista kaikissa valaistusolosuhteissa eivätkä yhtenäiset tekstuurittomat pinnat aiheuta ongelmia. Väylämäiset kohteet, kuten johtokäytävät, jokiuomat ja tieväylät, ovat ideaaleja LiDAR-operoinnin kannalta, koska tiedonkeruu onnistuu jopa yhdellä lentolinjalla lentämällä väylän päältä ainoastaan yhteen suuntaan.

Työnkulun osalta prosessointi on huomattavan nopeaa, nopeimmillaan valmis luokiteltu pistepilvi on käytettävissä tunnin sisällä lennon jälkeen ja pistepilven laadunvarmistus on mahdollista tehdä jopa reaaliajassa lennon aikana keilaimeen liitetyn datalinkin välityksellä, mutta joka tapauksessa viimeistään heti laskeutumisen jälkeen.

Datalinkki mahdollistaa reaaliaikaisen laadunvalvonnan lennon aikana.

YellowScan on erikoistunut UAV/LiDAR -teknologiaan

Ranskalainen YellowScan on alan pioneeri, joka on kehittänyt UAV/LiDAR-laiteteknologiaa yli kymmenen vuoden ajan. Yrityksen palveluksessa on yli viisikymmentä alan ammattilaista, joista huomattavan suurella osalla on maanmittaritausta. Yhtiö kehittääkin tuotteita nimenomaan maanmittauksen tarpeisiin asiakaslähtöisesti. YellowScanin Ranskassa toimiva tytäryhtiö L’Avion Jaune (Keltainen lentokone) hyödyntää YellowScanin teknologiaa ja tarjoaa maanmittauksen konsulttipalveluita, joten YellowScanilla on jatkuva yhteys käytännön tekemiseen.

YellowScanin tuotevalikoima on kattava ja kaikki laitteet ovat integroituja kokonaisuuksia, joissa samoihin kuoriin on integroitu LiDAR-sensori, paikannustekniikka, akku ja prosessointiyksikkö. GNSS/IMU on kriittisessä roolissa pistepilven laadun kannalta ja YellowScan luottaakin ratkaisuissaan Applanixin-teknologiaan, joka on alan ehdoton de facto -standardi.

YellowScanin tuotevalikoima on kattava ja kattaa kaikki UAV-tarpeet ja sovellukset.

Mullistaako YellowScan Mapper markkinat?

Portfolion viimeisin tulokas YellowScan Mapper esiteltiin lokakuussa 2020 ja ensimmäinen tuotantoerä valmistui juuri ennen joulua. Mapper on perinteikäs nimi YellowScanin historiassa, sillä juuri ensimmäinen YellowScanin julkaisema tuote vuonna 2014 oli nimeltään Mapper ja nyt julkaistu versio edustaa tämän tuotelinjan kolmatta sukupolvea.

YellowScan Mapper on ensiesittelystään lähtien herättänyt suurta mielenkiintoa, koska laitteen hinta-laatusuhde on uudella tasolla. Mapperin keilainsensori on Livox Horizon, jonka tuottaman pistepilven tarkkuus on 3 cm, kohina 2 cm ja mittaustaajuus 240 000 pistettä sekunnissa. Optimi lentokorkeus on 70 m, mutta operointi on mahdollista aina 120 metriin saakka. Pistetiheyteen vaikuttaa lentokorkeuden ohella lentonopeus, ja esimerkiksi 70 metrin korkeudella ja 10 m/s nopeudella keilattaessa pistetiheydeksi saadaan noin 200 pistettä/m2 ja 10 ha suuruisen alueen keilaus on tehty kolmessa minuutissa.

Mapperilla saavutettava pistetiheys on korkeuden ja nopeuden funktio.

Pistepilven suorasta georeferoinnista huolehtii Applanix APX-15 GNSS/IMU, joka tukee kaikkia GNSS-järjestelmiä ja tuottaa senttitarkan GNSS- ja asentotiedon 200 Hz taajuudella. Lentoradan jälkilaskenta tehdään POSPac-ohjelmistolla hyödyntämällä Trimnet-verkon korjausdataa.

Kuvat ja LiDAR-pistepilvi samalla lennolla

Järjestelmää voidaan täydentää kameramoduulilla, jota varten Mapperissa on valmis paikka. Sony APS-C 20.1 megapikselin kamera mahdollistaa fotogrammetrisen kuvauksen yhdessä keilauksen kanssa saman lennon aikana. Kuvia voidaan käyttää ortokuvan tuottamiseen tai pistepilven värjäämiseen. Paikannusjärjestelmä tuottaa myös kuville tarkat koordinaatit ja orientoinnin, joten sivupeittoa voidaan kasvattaa normaaliin kuvauslentoon verrattuna.

YellowScan Mapper toimitetaan kätevässä kuljetuslaukussa. 

Keilaimen takaosassa on valmiina paikka 20.1 megapikselin kameramoduulille.

YellowScan Mapper on paketoitu kompaktiksi ja säänkestäväksi kokonaisuudeksi, jolla voidaan operoida myös talviolosuhteissa jopa -20°C:n lämpötilassa. Keilaimen paino on 1,5 kg, joten operointiin ei tarvita järeää dronea ja yhdessä esimerkiksi GeoDrone 6:n kanssa päästään reilusti yli puolen tunnin lentoaikoihin.

YellowScan Mapper yhdessä GeoDrone 6:n kanssa muodostaa tehokkaan työkalun ympäristön mallintamiseen.

YellowScan Mapper yhdessä GeoDrone 6:n kanssa muodostaa tehokkaan työkalun ympäristön mallintamiseen,

Vaikka Mapper edustaa valmistajan lähtötason UAV-keilainta, sen ominaisuudet riittävät käytännössä useimpiin tarpeisiin mukaan lukien rakennetun ympäristön mallintaminen, infrarakentaminen, metsätalous ja ilmajohtoihin liittyvät sovellukset.

UAV/LiDAR-blogisarjan seuraavissa osissa tutustutaan tarkemmin lennonsuunniteluun, operointiin, prosessointiin ja käyttösovelluksiin.

Kirjoittaja:

Sakari Mäenpää
Myyntipäällikkö

0207 510 622
sakari.maenpaa (at) geotrim.fi

Webinaari

UAV LiDAR-tekniikka tutuksi: Esittelyssä YellowScan Mapper

Tiistaina 2.3.2021 klo 13-14
Maksuton.

Panelistit: Tom Steffansson ja Sakari Mäenpää

Rekisteröidy webinaariin

Laserkeilausohjelmistojen kehitystä seuraamassa – Tompan kokemuksia

Kirjoittaja: Tom Steffansson

Koska laserkeilaus laitteineen ja ohjelmistoineen kehittyy koko ajan, tulee joskus muisteltua, mitä oli menetelmän alkuaikoina. Sain ensimmäisen kerran käsiini pistepilven muistaakseni vuonna 2000 –  ­se oli pätkä voimalinjakeilausta. Ei oikein mennyt tajuntaan, että mitä se pistemössö oli. Aikani tutkittua huomasin, että tässähän on ideaa. Data oli muistaakseni peräisin ruotsalaisen Ahab-firman keilaimesta. LAS-formaatti ei ollut vielä syntynyt, mutta Terrasolidin TerraScanin ensimmäiset versiot olivat jo nähneet päivänvalon. Kiinnostuin laserkeilauksesta ja olin onnekkaasti 2000-luvun alusta lähtien mukana touhussa. Heti alkuun olin apuna mittaamassa isossa, 175 km pitkässä, Orivesi-Pieksämäki -ratakeilausprojektissa GPS-runkoa. Tein manuaalista korjausluokittelua ja taiteviiva- ja kalustevektoroinnin koko matkalle. Nyt oli jo Hasselblad-kamera asennettu keilaussysteemiin ja saatiin tuotettua ortokuvat TerraPhotolla. Kuvat olivat kooltaan  3056 x 2032 pikseliä.

Orivesi-Pieksämäki -ratakeilaus. Lentokorkeus helikopterilla 50 m ja pistetiheys 10 pistettä/1 m2

Sittemmin tuli vuosien mittaan käsiteltyä Terra-sovelluksilla kymmeniä laserkeilaus- ja ilmakuvaprojekteja Terrasolidin TopTerra -tytäryhtiössä. Oli kaivoksia, kaasuputkilinjoja, kaupunkeja, valtateitä, riisiviljelmiä ja vaikka mitä. Samaan aikaan työskentelin jo Terrasolidille ja näin alaa näköalapaikalta ympäri maailmaa 15 vuotta asiakkaitten kouluttamisen ja teknisen tuen merkeissä. Eräs mieleen painuneista työmatkoista oli Ranskan Guayanaan. Aamulenkillä merenrannalla ihmettelin öljytynnyrin näköisiä tummia möykkyjä rantahietikon yläreunassa. Ei raksuttanut. Menin yhtä möykkyä tutkimaan. Olikin 200-kiloinen jättiläismerikilpikonna munimassa. Niitä näkyikin sitten yhdellä silmäyksellä parikymmentä, kun silmät kalibroituvat tilanteeseen.

Nyt eletään 70-luvun scifi-elokuvien tapahtumavuosia ja tuntuu, että tämä ala on yhtä reaaliaikaista scifiä. En arvannut ensimmäistä kertaa käynnistäessäni TerraScania, että siitä tulisi vuosien mittaan maailmankuulu sovellus. Alalle on luonnollisesti kehkeytynyt paljon kilpailua. On varaa mistä valita. Uusin valintani onkin Spatix. Mikä ihmeen Spatix? Se on CAD-ohjelma aidolla stereotuella, jota kehittää venäläinen Gisware Integro -yhtiö. Spatix on optimoitu Terra-sovellusten alustaksi. Erikoisen tästä tekee se, että Spatixin saa ilmaiseksi hankkiessaan Terrasolidin softapaketin. Se on vielä muodollisesti beta-asteella, mutta toimii jo tuotantotyössä ihan hyvin, kun pysytään yksinkertaisissa CAD-elementeissä, eikä tarvitse erityisesti CAD-aineistojen referenssitoimintoja. MicroStationin käyttäjien on helppo siirtyä ilman erityistä treeniä Spatix-ympäristöön. Terra-sovelluksethan ovat tähän saakka toimineet vain MicroStation ympäristössä. Kaikki ei ole vielä valmista, mutta neljä Terra-sovellusta toimii jo, ja ne ovat:

TerraScan

TerraScan on ensimmäinen kaupallinen tuotteistettu sovellus pistepilven käsittelyyn. Samoin ensimmäisenä tuki mobiilikeilausdatoille. Ensimmäisenä tuli markkinoille Optechin Lynx -systeemi 15 vuotta sitten, jota varten Terrasolid lisäsi tarvittavia ominaisuuksia sovelluksiin.

Alun tiedostokohtaisen käsittelyn jälkeen tuli mahdollisuus käsitellä aineistoja projektitasolla ilman kokorajoitusta. Ensin oli manuaalityökaluja, sitten automaattisia luokittelurutiineja. Nyt sovellus sisältää kuutisen sataa eri toimintoa. Suurikokoisten datojen prosessointia voidaan keskitetysti hajauttaa nopeassa verkossa oleville ’orjakoneille’ TerraSlaven avulla. Nämä prosessointikoneet eivät tarvitse muuta kuin TerraSlave-asennuksen.

Kuvassa ensimmäinen laserkeilausaineisto, jonka sain käsiini 1997. Pistetiheys 0.6 pistettä/1 m2

TerraModeler

TerraModeler oli käytössä jo 90-luvun alussa. Se tuki osaltaan mukavasti uutta TerraScania. Hajapisteet ja taiteviivat on saatava ruotuun ja korkeuskäyrätkin piirrettävä. Ajan myötä vaatimukset kasvoivat ja piti saada projektitason korkeuskäyrä- ja gridi-mallien tuotantotoiminnot ja paljon muuta. TerraModelerilla voi muuten tehdä näppärästi mm. maanrakentamisen suunnittelua.

Kuopion Jukolan viestin käyrät erikoiskeilauksesta suunnistuskartantekijä Jussi Silvennoiselle.

TerraPhoto

Kun keilataan, voi myös ilmakuvata ja keilanjärjestelmiin alettiinkin jo pian sovittaa ilmakuvauskameroita. TerraPhoto ilmestyi pian TerraScanin perään. Keilauksen kannalta paras tulos saavutetaan, jos samaan aikaan ilmakuvataan. Samanaikaisesta kuvauksesta on paljon hyötyä laseraineiston viimeistelyssä ja päinvastoin. Pistepilvestä ei välttämättä ymmärrä jotain yksityiskohtaa. Kuvalta se selviää, jos ei olla aivan kuusikossa. Sitten alkoi orastava kaupunkimalli-buumi. Vektoroidut rakennukset vaativat kuorrutuksen. Tuli viistokuvaukseen monikamerajärjestelmiä. TerraPhotoon tuli seinien teksturointiominaisuus aikoja sitten. Nyt sekin on uudella tasolla. Kaupunkimalleja voidaan säilöä ilmaiseen tietokantaan ja ylläpitää aineistoa.

Tietenkin on myös tullut kauan sitten tuki mobiilikeilauksen monikamerajärjestelmien kuvien käsittelyyn.

2005 Alavieskan kunnan laserkeilaus ja ilmakuvaus, josta tosiortotuotanto. Vaalea rakennus on kirjasto.

Alavieskan kirjastorakennus keskellä kuvaa vektoroituna.

TerraMatch

Jokaisessa lentosessiossa on havaittavissa systemaattinen HRP-virhe. Johtuu IMU/GNSS:n ja skannerin välisestä kolmen akselin kulmaerosta. TerraScan ei osannut tätä ongelmaa ratkaista. Tarvittiin TerraMatch. Siitä kehittyi monipuolinen laseraineiston sisäisen kalibroinnin korjaaja. Sillä myös sovitetaan mobiilikeilausdata kontrollimittauksiin mahdollisimman oikeaoppisesti.

Kalibroimaton pistepilvi

Kalibroitu pistepilvi

On hienoa, että suomalainen ohjelmistoyritys on ollut ladunavaajana pistepilvien käsittelyssä. Suomalaisille käyttäjille on kotimaisuudesta etua. Tekninen tuki keskustelee suomen kielellä. Apu on lähellä.

Tämä blogi on alustuksena vuoden alusta alkaneelle Terrasolid-kampanjalle. Tarjoamme asiakkaillemme suomalaista vaihtoehtoa pistepilvien käsittelyyn. Osallistu Geotrimin webinaareihin ja seuraa Geotrimin kotisivuja. Tarkoituksenamme on mahdollistaa matalan kynnyksen tutustuminen sovelluksiin ja tarjota riittävästi ilmaista testausaikaa.

kIRJOITTAJA

Tom Steffansson
Myynti-insinööri, Mobiilikartoitus

020 7510 649

tom.steffansson (at) geotrim.fi

Webinaari

Pistepilvien jatkokäsittely Terrasolid-ohjelmistolla

Ajankohta: 19.1.2021 klo 10-11
Maksuton

Osallistu webinaariin

LASERKEILAUS

Perinteinen maalaserkeilaus, käsiskannerit, laserkeilaus UAV-järjestelmillä:

Laserkeilaus

Trimble MX9 -mobiilikartoitusjärjestelmä tutuksi – Osa 2: Trimble MX9-järjestelmän asentaminen

Trimble MX9 asennettuna auton katolle

Tässä blogisarjassa tutustutaan Trimblen MX9-mobiilikartoitusjärjestelmään, sen ominaisuuksiin, operointiin ja käyttösovelluksiin. Sarjan toisessa osassa käsitellään MX9:n asentaminen.

MX9-järjestelmän käyttösovellukset liittyvät valtaosiltaan liikenneväylillä tapahtuvaan tiedonkeruuseen, joten tyypillisiä asennusalustoja ovat erilaiset maanteillä ja rautateillä liikkuvat ajoneuvot. Vesiväylillä myös veneet ja muut vesistössä liikkuvat kulkuneuvot tulevat kyseeseen. Joustavan modulaarisen rakenteen ansiosta MX9 voidaan nopeasti asentaa erilaisiin ajoneuvoihin käyttösovelluksen mukaan.

Kahdelta henkilöltä menee MX9:n asentamiseen puolisen tuntia. Nopeutettu video näyttää vaiheet.

Ajoneuvon ominaisuuksien osalta ei ole erityisiä vaatimuksia, ainoastaan asennuskorkeuden on oltava riittävä ja sensoriyksikkö on pystyttävä asentamaan siten, etteivät ajoneuvon rakenteet estä laserkeilaimien ja kameroiden näkemää. Pystyperäiset ajoneuvot soveltuvat parhaiten käyttötarkoitukseen, joten useimmat tila-autot, katumaasturit tai pakettiautot ovat mahdollisia ajoneuvoratkaisuja, joissain tapauksissa myös farmariautot. Trimbleltä on saatavana Excel-laskuri, jonka avulla voi varmistaa ajoneuvon soveltuvuuden mobiilikartoitukseen.

Trimble MX9 ja Trimble MX8
Trimble MX9 asennettuna

Kuva 1. Kolme ajoneuvovaihtoehtoa MX9-järjestelmälle: farmariauto, pakettiauto/pikkubussi ja katumaasturi. Pikkubussin katolla vanhemman sukupolven MX8-järjestelmä.

Korkeudesta on hyötyä

Tiedonkeruun kannalta on eduksi, jos järjestelmä pystytään asentamaan hiukan korkeammalle. Tällöin laserkeilaimien kantama on pidempi ja paremmassa kulmassa tienpintaan nähden sekä kameroiden, varsinkin tien pintaa kuvaavan viistokameran kuva-ala on suurempi. Takakameran riittävän kuva-alan kannalta auton korkeuden on hyvä olla minimissään 1.6 m. Laserkeilaimien minimi mittausetäisyys on puolestaan 1.2 m, joka on ehdoton minimikorkeus asennukselle.

Asennustelineen sijainti

Järjestelmän asennuksen ajallisesti aikaa vievin vaihe on asennustelineen kiinnittäminen auton taakkatelineisiin. Asennustelineen ansiosta itse sensoriyksikkö on nopeasti asennettavissa paikalleen työpäivän alussa ja poistettavissa asennustelineestä helposti työpäivän jälkeen. Asennuksen kannalta näppärin on kattokaiteilla varustettu ajoneuvo, johon taakkatelineet voidaan sijoittaa vapaasti haluttuihin kohtiin, jolloin asennustelineen kiinnityskohtia ei tarvitse säätää. Kattokaiteen ja taakkatelineen on oltava sellainen, että se kestää katolle tulevan kokonaisuuden yhteispainon, 55 kg.

Rautatiesovelluksissa ajoneuvona voidaan käyttää kiskopyörillä varustettua autoa, jolloin asennus ei olennaisesti poikkea normaalista ajoneuvoasennuksesta. Toinen yleinen vaihtoehto on Tka-sarjan ratakuorma-auto. Tässä tapauksessa asennustelineelle on rakennettava sopiva kiinnitysteline ja sensoriyksikkö tulee yleensä ”väärinpäin” eli keulaan siten, että sitä ikään kuin työnnetään eteenpäin.

Trimble MX9:n asentaminen: asennusteline
Trimble MX9:n asentaminen: asennusteline

Kuva 2. Asennusteline kiinnitettynä auton taakkatelineisiin ja Tka-ratakuorma-auton keulaan.

Sensoriyksikön asentaminen

Asennustelineen kiinnityksen jälkeen voidaan sensoriyksikkö nostaa paikoilleen. Yksikkö painaa 37 kg ja paikoilleen nostaminen vaatii kaksi henkilöä. Nostamista varten sensoriyksikkö on varustettu tukevilla kahvoilla, joiden avulla nostaminen on helppoa ja turvallista. Sensoriyksikkö lukittuu automaattisesti paikalleen asennustelineeseen, mutta kiinnitys varmistetaan lukitusruuveilla.

Trimble MX9:n asentaminen: sensoriyksikkö

Kuva 3. Sensoriyksikön nosto asennustelineeseen vaatii kaksi henkilöä. Kiinnitys varmistetaan lukitusruuveilla.

Trimble MX9:n asentaminen: sensoriyksikön lukitus

Muiden komponenttien sijoittaminen

Järjestelmän muut komponentit eli kontrolliyksikkö ja virtayksikkö asennetaan yleensä ajoneuvon sisätiloihin, esimerkiksi takapenkille tai tavaratilaan. Sijoittelu on käytännössä vapaata ja ainoa huomioitava seikka on kaapelien pituudet: sensoriyksikön ja kontrolliyksikön välisen kaapelin pituus on viisi metriä ja kontrolliyksikön ja virtayksikön välisen kaapelin kolme metriä. Takapenkkiasennuksen etuna on se, että operaattori näkee helposti kontrolliyksikön tilan ja pääsee tarvittaessa käynnistämään ja sammuttamaan yksikön tai vaihtamaan kiintolevyt.

Trimble MX9:n asentaminen: kontrolliyksikkö
Trimble MX9:n asentaminen: kontrolliyksikkö

Kuva 4. Kontrolliyksikkö asennetaan yleensä auton tavaratilaan tai takapenkille.

Virtayksikkö liitetään kontrolliyksikköön ja virtalähteeseen. Väliaikaisissa MX9:n asennuksissa ja lyhyissä projekteissa on järkevää käyttää virtalähteenä akkua, joka huomattavasti nopeuttaa asennusta ja antaa joustavuutta operointiin. Järjestelmä toimii 12 VDC jännitteellä ja kytkemällä tarvittaessa useampi akku rinnan, saadaan riittävän pitkä toimintakapasiteetti useimpiin kartoitussessioihin.

Trimble MX9:n asentaminen: virtayksikkö
Trimble MX9:n asentaminen: virtayksikkö

Kuva 5. Virtayksikkö liitetään kontrolliyksikköön ja virtalähteeseen. Kuvan 110 Ah akku antaa MX9- järjestelmälle noin viiden tunnin toiminta-ajan.

GAMS-antenni

Väliaikaisissa asennuksissa voidaan käyttää GAMS-lisäantennia, joka nopeuttaa järjestelmän alustamista mittauksen alussa, mutta ajoneuvon renkaaseen kiinnitettävän DMI:n asentaminen on mielekästä lähinnä kiinteissä asennuksissa tai pidemmissä projekteissa. GAMS-antenni voidaan asentaa nopeasti magneettikiinnityksen avulla auton katolle tai kiinnittää kiinteän tangon avulla asennustelineeseen, jolloin asema asennustelineen suhteen säilyy aina vakiona.

Trimble MX9:n asentaminen: antenni

Kuva 6. GAMS-antenni asennettuna asennustelineeseen kiinnitettyyn tankoon, jolloin asennusparametrit pysyvät vakiona.

Trimble MX9 asentaminen: asennusparametrit ja ajoneuvoprofiili

Viimeinen vaihe asennuksessa on ajoneuvokohtaisten asennusparametrien mittaaminen ja ajoneuvoprofiilin luominen. Asennustelineessä on referenssipiste, jonka suhteen määritetään telineen korkeus maanpinnasta sekä lisälaitteiden, GAMS ja DMI, asema järjestelmän 3D-referenssi­koordi­naatistossa (kuva 7). Referenssipisteestä x-akseli kasvaa ajoneuvon kulkusuuntaan, y-akseli siitä kohtisuoraan oikealle ja z-akseli alaspäin.

Trimble MX9:n asentaminen: referenssikoordinaatisto

Kuva 7. MX9-järjestelmän referenssikoordinaatisto.

Mittaamiseen voidaan käyttää mittanauhaa ja vatupassia. Mikäli GAMS-antennia halutaan käyttää POSPac-jälkilaskennassa suuntareferenssinä, on mittaus syytä tehdä millitarkasti esim. takymetrillä.

Trimble MX9:n asentaminen: parametrit

Kuva 8. Järjestelmän nollapiste, josta mitataan asennuskorkeus maan pintaan sekä lisälaitteiden sijainti referenssikoordinaatistossa.

Parin harjoituskerran jälkeen kahdelta henkilöltä menee MX9:n asentamiseen puolisen tuntia alkaen taakkatelineiden asentamisesta ja päätyen ajoneuvoprofiilin luomiseen. Useamman päivän mittausprojekteissa, kun asennusteline on paikoillaan, järjestelmä on käyttökunnossa huomattavasi lyhyemmässä ajassa.

Blogisarjan seuraavassa osassa aiheena on Trimble MX9-järjestelmän operointi.