Trimnet-verkon tukiasemat uusiutuivat. Mitä on uuden tekniikan sisällä?

Trimble Alloy -vastaanotin

Kaukana ovat ne päivät, jolloin satelliittivastaanottimilla jouduttiin keräämään satelliittidataa tarkkojen koordinaattien määrittämiseksi tuntikausia tai etsimään maastosta tunnettuja kiintopisteitä, joille pystytettiin oma tukiasema parin tunnin mittauksien vuoksi. Näistä ajoista on satelliittiteknologian kehittynyt paljon: on tullut uusia satelliittijärjestelmiä ja Trimblen VRS-teknologian myötä satelliittimittausten luotettavuus ja tarkkuus ovat kasvaneet: satelliittipohjaisiin ratkaisuihin voidaan luottaa senttimetriluokan tarkkuuksia haettaessa.

Satelliittiteknologian kehitys on jatkuvaa

Trimnet VRS-palvelu pitää katseen tulevaisuudessa. Satelliittiteknologian parissa työskenteleminen on pitkäjänteistä, jatkuvaa kehittämistä.

Trimnet-palvelussa teknisellä puolella on huomioitu suomalaiset olosuhteet niin koordinaatistojen kuin pohjoisen sijaintimme suhteen. Kehittämisen hyödyt näkyvät käyttäjille, ja erityisesti uusilla sovellusalueilla, joilla on etsitty hyötyjä uudesta teknologiasta – satelliittimittaamiseen tarkoitettuja laitteita on voitu hyödyntää tehokkaammin ja luotettavammin.

Perinteisessä maanmittauksessa on löydetty uusia ulottuvuuksia ja työtapojen muutoksia, kun esimerkiksi optisista laitteista on siirrytty GNSS-mittauslaitteisiin.

Työskentely on muuttunut myös infrarakentamisessa, kun on huomattu koneohjauksessa Trimnet-satelliittimittauksen tuomat kokonaistaloudelliset hyödyt.

Geotrim on tehnyt mittavan investoinnin Trimnet VRS-palveluun ja tulevaisuuteen. Palveluun liittyvässä tukiasemateknologiassa on panostettu uusimpaan teknologiaan ja kaikki Trimnet-verkon tukiasemat on päivitetty uusimman teknologian Trimble Alloy -vastaanottimiin 2020-2021. Alloy-vastaanottimet pystyvät hyödyntämään kaikkia uusia GNSS-signaaleja, mukaan lukien uusia BeiDou (III)-signaaleja. Alloy varmistaa paremman datan laadun, järjestelmän monitoroinnin sekä tehokkaamman häiriönsietokyvyn.

Tietoa Trimble Alloy -vastaanottimista
Trimble Alloy -vastaanotin

SEURATUT SATELLIITIT • GPS: L1 C/A, L2E (L2P), L2C, L5 • GLONASS: L1 C/A2 and unencrypted P code, L2 C/A and unencrypted P code, L3 CDMA • Galileo: L1 CBOC, E5A, E5B & E5AltBOC, E6 • BeiDou: B1, B2, B3, B1C, B2A • QZSS: L1 C/A, L1C, L1 SAIF, L1S , L2C, L5, LEX/L63 • IRNSS: L5, S-Band • SBAS: L1 C/A (EGNOS/MSAS), L1 C/A and L5 (WAAS) • L-Band: Trimble RTX™

Haluatko lisätietoa tekniikasta

Kaikille Trimnet-tukiasemille on v.2020-2021 vaihdettu modernisoidun GNSS-teknologian Trimble Alloy -vastaanottimet

  • Edistyksellinen Trimble kahden Maxwell™ 7 GNSS sirun setti: 672 kanavaa samanaikaista satelliittien seurantaa varten
  • Trimble EVEREST Plus™ monitieheijastusten esto
  • Trimble 360 -vastaanotinteknologia
  • IP68
  • Trimble RTX korjaukset
  • Trimble Sentry™ -monitorointiteknologia
  • Pivot-ohjelmistoalusta

Trimnet-palveluun tiivistyy tuottavuus, luotettavuus ja uudet mahdollisuudet

Uusien signaalitasojen hyödyntäminen ja palvelun tuottaminen mallinnetun datan pohjalta sekä varmennettu verkko-RTK-ratkaisu tuovat aitoa luotettavuutta ja tuottavuutta jokapäiväiseen tarkkaan paikantamiseen. Mahdollisuudet näkyvät siinä, että Trimnet VRS-palvelun kanssa voidaan käyttää GNSS-laitteita entistä erilaisemmissa ympäristöissä. Mahdollisuudet kuuluvat nykyisille palvelunkäyttäjille ja voivat tulevaisuudessa näkyä niin autonomian kuin robotiikankin lisääntymisenä.

Kirjoittaja: Jouni Ojanperä, myynti-insinööri, Trimnet

Trimble RealWorks

Trimble RealWorks, versio 12.0

Trimble RealWorks-ohjelmistoon on julkaistu päivitetty versio, 12.0.

Pistepilvien käsittelyohjelmisto Trimble RealWorks tarjoaa tehokkaat työkalut pistepilvien rekisteröintiin, analysointiin, mallintamiseen ja parhaiden 3D-lopputuotteiden luomiseen laserkeilausaineistoista.

RealWorks on nyt uuden päivityksen myötä saatavilla myös SaaS-pohjaisena lisenssinä, jolloin kaikki päivitykset tulevat automaattisesti vuosimaksun myötä.

RealWorks 12.0-version uusia ominaisuuksia ja parannuksia ovat muun muassa:

  • Putkistojen mallinnus: Uusi työkalu putkien ja kokonaisten putkistojen luomiseen valitsemalla osakokonaisuuksia pistepilvestä, jotka ohjelma tunnistaa, mallintaa ja yhdistää putkilinjoiksi.
  • Liikkuvien objektien automaattinen segmentointi: ohjelma tunnistaa automaattisesti kohteet kuten autot tai ihmiset ja segmentoi ne liikuttelua varten. Toiminto soveltuu erityisesti onnettomuustutkintaan tai mallinnettujen kohteiden sovittamiseen ympäristöön.
  • Pinnan editointi: Mesh-editointityökalulla voidaan nyt lisätä viivasegmenttejä kokonaisten kolmioiden luomiseksi ja Mesh-mallin täydentämiseksi tai muokkaamiseksi.
  • Muunna projektiin tuodut kuvat ortokuviksi: Uusi työkalu muuntaa tuodut kuvat ortokuviksi, joita voidaan näyttää 3D-näkymässä.
  • Pistepilvien läpinäkyvyys: Uusi visualisointityökalu on lisätty mallien lähellä olevien pistepilvien läpinäkyvyyden säätämiseen.
  • Parannuksia ulkoasuun ja IFC-tiedostojen tiedonsiirtoon.

Uusia UAS-ratkaisuja kaupunkialueella lentämiseen

(4.11.2021)

Uusi EU-droneasetus astui voimaan vuoden 2021 alussa ja sen siirtymäaika loppuu noin 50 vuorokauden kuluttua. 

Uusi asetus tulee merkittävästi vaikuttamaan dronea kartoitus- ja muuhun työhön asutulla alueella käyttävien lento-operointiin, laitteisiin ja lupiin. Nykytiedon mukaan nämä operoinnit menevät uuden säätelyn Erityinen-luokkaan (Specific). Erityinen-luokassa operaattorilupien myöntäminen tapahtuu Traficomin toimesta SORA-riskiarviointimenettelyn kautta, ellei operointiin soveltuvaa ennalta määriteltyä riskiluokitusta ole olemassa (PDRA).
Laitevalmistaja Nordic Drones Oy:llä, jonka GeoDrone-kartoituskopterin myyjänä Geotrim toimii Suomessa, on jo uuden droneasetuksen vaatimuksia ja omia testilentoja varten Erityinen-luokan operaattorilupa tiheästi asutetun alueen ulkopuolelle.

Uusi laki edellyttää operaattorilta ja drone-järjestelmältä myös maariskin hallintaa.  

Erityinen-luokan operaattorilupa ei kuitenkaan perusmuotoisena mahdollista tiheästi asutulla alueella operointia. Se edellyttää esimerkiksi dronen kanssa integroidun laskuvarjojärjestelmän käyttöönottoa ja sen toimintakyvyn osoittamista.

Nordic Drones on yhteistyössä suomalaisen VectorSave-laskuvarjovalmistajan kanssa kehittänyt GeoDrone-integraation ja tehnyt kesän aikana lähes 20 ASTM 3322-18 standardin mukaista testilentotilannetta ja varjolaukaisua ilman yhtään virhetilannetta.

Operaattorilupa kaupunkialueilla lentämiseen hakuvaiheessa

Geotrimin drone-asiantuntija Eero Vihavainen on yhdessä Aviagoupin Jarno Koposen kanssa valmistellut ja jättänyt Traficomille Suomen ensimmäisen kaupunkioperointiin tähtäävän operaattorilupahakemuksen, jonka tarkoituksena on mahdollistaa GeoDronella tapahtuvan kaupunkikartoituksen jatkuvuus. Tähän hakemukseen on yhdistetty maariskinhallinta Nordic Drones Oy:n GeoDrone 6 -kopterin laskuvarjointegraation avulla.

Geotrim Oy:n oma operaattorilupahakemus on ensimmäinen vaihe kohti vaativaa kaupunkioperointia. Lupaprosessin kautta tavoitteena on myös luoda hyväksytty koulutusjärjestelmä ja asiakkaille tarjottava palvelukokonaisuus, jotta koulutuskokonaisuus yhdessä GeoDrone 6 -kopterin ja laskuvarjointegraation kanssa palvelisi ja edistäisi asiakkaiden tarpeita kaupunkikartoitukseen. Hakemus on Traficomilla käsittelyssä, joten pyrimme tiedottamaan aiheesta heti, kun uutta tietoa on saatavilla.

Lisätietoa

Geotrim Oy, Eero Vihavainen, +358406877410, eero.vihavainen@geotrim.fi

Kuva: Nordic Drones Oy

Building Point Finland tuo Spot-koiran ja automaattisen robottilaserkeilauksen Suomen markkinoille

Trimblen autonomisessa robottilaserkeilauksessa Boston Dynamicsin Spot-robottikoira on integroitu Trimble X7 3D-laserkeilaimen ja FieldLink-ohjelmiston kanssa

Trimble on 19.10.2021 julkistanut autonomisen laserkeilausrobotin, joka tarjoaa kokonaisvaltaisen ja ketterän menetelmän pistepilvien tuottamiseksi talonrakennustyömailla. Trimble® X7 -laserkeilain yhdessä FieldLink-ohjelmiston kanssa on täysin integroitu Boston Dynamics Spot® -robottiin. Menetelmä on suunniteltu rakennusurakoitsijoille ja rakennusvalvontaan sekä jatkuvaa seurantaa tai dokumentointia vaativiin kohteisiin. Robotti hoitaa toistuvat ja vaaralliset valvontatyöt.

Integroitu ratkaisu tallentaa työmaan dataa automaattisesti. X7:n FieldLink-ohjelmisto käyttää Spotin ohjausta luomaan reittipisteiden polun, jota Spot seuraa. Robotti pysähtyy pisteille laserkeilausta varten. Kerätty pistepilvi- ja kuva-aineisto on liitettävissä projektikoordinaattijärjestelmään sekä yksittäisiin skannausasemiin. Jo työmaalla voidaan reaaliajassa Trimblen tabletilla tehdä yhdistetty pistepilvi ja tarkastella materiaalia visuaalisesti. Itsenäisiä toimintoja suorittaessaan Spotin telakointiasema mahdollistaa akun lataamisen työmaalla sekä robotissa että X7-keilaimessa.

Spot-robottilaserkeilauksen etuina ovat toistuvan 3D-tiedonkeruun automatisointi, mikä vapauttaa ammattilaisten resursseja muuhun sekä nopea tiedonkulku toimiston ja työmaan välillä, mikä puolestaan helpottaa rakennusprojektin edistymisen dokumentointia. Yhdistelmä lisää tehokkuutta ja reaaliaikaista rakennetun datan analyysiä kentällä ja toimistossa.

Autonominen laserkeilausratkaisu on saatavilla BuildingPoint Finlandin kautta. www.buildingpointfinland.fi

Lisätietoa: Tuomas Anttila, puh. 044 7611 096

Trimbleltä uusi mobiilikartoitusjärjestelmä Trimble MX50 väylien ja omaisuuden hallintaan ja kartoitukseen

Trimble MX50

Trimble® MX50 -mobiilikartoitusjärjestelmä tarjoaa tarkan ja luotettavan tiedonkeruuteknologian, joka on yhteensopiva Trimblen geospatiaalisten ohjelmistojen kanssa.

MX50 tuottaa pienikohinaisen, tarkan maanpintadatan ja on suunnattu väylien tarkastuksista ja ylläpidosta vastaaville organisaatioille niin julkiselle kuin yksityisellekin sektorille.

Järjestelmä sisältää Trimblen suunnitteleman uuden laserkeilaimen erittäin tarkkaan tiedon keruuseen, 360 asteen panoraamakameran sekä GNSS/IMU-paikannusteknologian. MX50 tuottaa tiheää pistepilveä ja monipuolista kuva-aineistoa maanmittaustarkkuudella ja on yhteensopiva Applanix POSPac, Trimble Business Center ja Trimble MX -ohjelmistopakettien kanssa.

Trimble MX50 on osa Trimblen mobiilikartoitusportfoliota, johon kuuluvat myös Trimble MX9 ja MX7. Järjestelmien maahantuoja Suomessa on Geotrim, joka myös vastaa käyttökoulutuksesta, teknisestä tuesta sekä laitteiden huollosta.

Lisätietoa: Sakari Mäenpää, puh. 0207 510 622

Trimble MX50
Tutustu: Trimble MX50 -mobiilikartoitusjärjestelmä

Parhaat toimintatavat SLAM-laserkeilaamiseen

SLAM-laserkeilaaminen on helppoa, koska laitteiden käyttöliittymät pohjautuvat yhteen painikkeeseen. Tämä painike aloittaa laserkeilaimen pyörivän liikkeen, joka suuntaa lasersäteet ympäristöön, ja käynnistää SLAM-algoritmin, joka määrittää laitteen ja ympäristön piirteiden sijainnit. Käynnistämisen jälkeen voidaan nostaa keilain käteen ja kävellä mitattavassa ympäristössä. Kun mittaus on suoritettu, palataan takaisin aloituspisteeseen ja painetaan samaa painiketta uudestaan mittauksen lopettamiseksi. SLAM-laserkeilaimen käytön oppii minuuteissa. Parhaan mahdollisen pistepilven tuottamiseksi kannattaa huomioida seuraavat toimintatavat.

Suunnittelemalla säästät aikaa ja saat parhaimman laadun

Aloita aina uuden kohteen mittaaminen tekemällä suunnitelma mittausreitistä. Voit toteuttaa sen ennakkoon pohjapiirroksen avulla, mutta kannattaa aina kohteeseen saavuttua kävellä suunniteltu reitti läpi ennen mittausta. Tällöin havaitset mahdolliset muutokset ja erityispiirteet, joita pohjapiirroksessa ei näkynyt. Suunnittelussa tulee huomioida laitteiden mittaamisen peruspiirteet; aineiston keruu on suositeltavaa toteuttaa suljettuna kierroksena maksimissaan 20-30 minuutin aikana, ympäristössä tulee olla vähintään 10 m välein piirteitä/kohteita, keilaimen tulee osoittaa kohtisuorasti piirteisiin/kohteisiin ja mitattavien tilojen ovien olisi hyvä olla auki mittauksen ajan.

Mittauksen suunnittelulla voidaan estää virheiden syntyminen ja optimoida mittausaika sekä laatu. Lisäksi samalla voi suunnitella kontrollipisteiden paikat, jos aineisto vaatii georeferointia. Suunnitelmalla varmistetaan mittausreitin turvallisuus (esim. huomioiden työmaaliikenne) ja se, että kaikista tarvittavista ympäristöistä saadaan aineistoa. Suunnittelussa voidaan varmistaa tarvittavien suljettujen kierrosten muodostuminen ja listata kaikki avattavat ovet, jotta niiden takana olevista huoneista saadaan havaintoja. Lisäksi suunnitelmassa on hyvä tunnistaa hankalat olosuhteet kuten kapeat käytävät tai isot avoimet tilat, peitteisyydet, kiiltävät ja liikkuvat kohteet.

Lataa opas pdf-muodossa

Sulje aina mittausreitti samaan aloitus- ja lopetuspaikkaan

Suunnittelussa tärkeänä kohtana on mittausreitin sulkeminen, koska tällä tavalla varmistetaan laitteen tarkkuus. Sulkemisen mahdollistamiseksi tulee mittaus aloittaa ja lopettaa samaan paikkaan tai ainakin yhden metrin päähän aloituspaikasta. Valitse mittausreitin varrelta mittaukselle hyvä aloitus- ja lopetuspaikka. Tässä paikassa on hyvä olla jokin taso ja sopivan etäisyyden päässä useita piirteitä. Tasoa kannattaa käyttää laskualustana laitteen alustuksen ajan. Kun piirteitä on alle kymmenen metrin päässä, on niitä sopivasti. Lisäksi aloitus- ja lopetuspaikasta pitäisi pystyä aloittamaan mittaus yhteen suuntaan ja lopettamaan toisesta suunnasta. Tämän tavoitteena on suunnata laite lopussa samoihin piirteisiin kuin alussa.

O-kirjaimen muotoinen mittausreitti on aina paras

Sulkemisen lisäksi myös mittausreitin muodolla on merkitystä. Esimerkiksi kuvassa 1 u-kirjaimen mallinen rakennus vaikuttaa mittauksen suunnitteluun ja pistepilven tarkkuuteen. Tila voidaan mitata u-kirjaimen päästä päähän eli A:sta B:hen ja takaisin, jotta saadaan suljettu kierros aikaiseksi (kuva 1a). Tällöin pistepilven tarkkuus voi olla esimerkiksi noin 5 cm.

Mittausreitin parantamiseksi, ja samalla tarkkuuden parantamiseksi 1 cm luokkaan, olisi hyvä luoda o-kirjaimen muotoinen suljettu kierros. Jos kerros on katutasolla ja on mahdollista kulkea suoraa reittiä B:stä A:han ulkona, kannattaa näin toimia (kuva 1b). Tällöin suljettu kierros lisää havaintoja A- ja B-pisteiden välille ja paikannuksen tarkkuus paranee. Mikäli ulkotilan kautta ei päästä kulkemaan B:stä A:han, voidaan näiden väille luoda yhteisiä havaintoja ikkunoiden kautta. Tämä onnistuu laittamalla keilain ikkunasta ulos molemmissa u-kirjaimen päissä. Kannattaa kuitenkin huomioida keilaimen maksimi mittausetäisyys. Pidemmän mittausetäisyytensä (100 m) vuoksi GeoSLAM ZEB HORIZON toimii tähän tarkoitukseen paremmin kuin muut GeoSLAM-keilaimet.

Mikäli o-kirjaimen muotoinen mittaus ei onnistu, voi tarkkuutta parantaa aloittamalla mittaus u-kirjaimen pohjalta pisteestä C (kuvassa 1c). Tällöin mittausreitistä muodostuu kahdeksikko ja lisäämme suljettuun kierrokseen yhden sulkupisteen lisää (pisteeseen C), joka auttaa paikannusta. Mittauksen aikana pisteestä C kuljetaan ensin pisteeseen A ja sitten takaisin. Tämän jälkeen kuljetaan pisteeseen B ja takaisin pisteeseen C. Suunnittele mittausreitti hyvin, jotta aineistosi olisi mahdollisimman tarkka. Mitatessa useampia kerroksia huomaa, että voit sulkea kierroksia myös kerrosten välillä.

Kuva 1. Kierroksien sulkemisen vaihtoehtoja a) aloita mittaus A:sta kohti B:tä (keltainen) ja palaa takaisin samaa reittiä (sininen) eli kierroksesta muodostuu u-kirjaimen muotoinen b) aloita mittaus A:sta kulkien (keltaista) B:n kautta lyhintä reittiä takaisin A:han (sinistä) eli kierroksesta muodostuu o-kirjaimen muotoinen c) aloita mittaus C:tä ja kulje ensin A:han (keltaista) ja takaisin (sinistä) ja sen jälkeen B:hen (keltaista) ja takaisin (sinistä) eli muodosta kahdeksikon muotoinen mittaus. 

Mitä enemmän suljettuja kierroksia keilauksen aikana, sitä parempi tarkkuus

Kuten kuvan 1 esimerkistä havaitaan, vaikuttaa suljetun mittauksen lenkin koko tarkkuuteen. Jos lenkki on suuri, sitä suurempi mahdollisuus on syntyä absoluuttista virhettä. Suunnittele siis lenkin sisälle pienempiä lenkkejä kohteiden ympäri, jotta virheitä ei syntyisi. Samalla yhdessä huoneessa tehdyt useat kierrokset lisäävät aineiston kattavuutta. Tästä esimerkkinä, mikäli kierrät huoneessa ensin yhteen suuntaan ja sitten toiseen saat varmemmin kaikkien nurkkien takaa havaintoja eikä aineistoon jää aukkoja. Havaittujen kohteiden seuraaminen on helppoa ZEB-REVO RT -laitteella, joka näyttää reaaliajassa mitä havaintoja laite saa. Minimi tarve sisäisille silmukoille vaihtelee laitteittain. ZEB-REVO RT ja ZEB Go -laitteilla suositellaan sisäisiä silmukoita vähintään noin 30 m välein, kun ZEB HORIZON:lle suositellaan noin 50 m välein.

Tarkastellaan tarkemmin pienempiä silmukoita mittauskierroksen sisällä kuvan 2 kautta. Voit kävellä sisätiloissa huoneeseen monilla tavoilla, mutta tee aina käännökset hitaasti, jotta laiteen paikannus saa tarpeeksi havaintoja tutuista piirteistä ennen uusia piirteitä. Kävele muutenkin hieman normaalia kävelynopeuttasi hitaammin. Tämä takaa mahdollisimman tiheän pistepilven saannin. Huoneissa voidaan vain käväistä, jolloin aineisto on käyttökelpoista (kuva 2). Tällä tavalla pistepilveen jää kuitenkin helposti aukkoja. Tätä menetelmää parempi tapa on kiertää huoneessa “seiniä pitkin”. Saat kattavamman pistepilven, mutta osa pinnoista voi jäädä havainnoitta. Paras kävelytapa on kierrellä huoneessa useita silmukoita ja vaihtaa jopa kiertosuuntaa välillä. Tämä aineisto kattaa varmasti suuren osan huoneesta ja saat enemmän havaintoja kohteista.

Kuva 2. Kävelytavalla on vaikutusta SLAM-laserkeilaimen pistepilveen. Käväisemällä huoneessa saadaan käyttökelpoinen aineisto, mutta seiniä pitkin tai useita silmukoita luomalla aineisto paranee huomattavasti. 

Varmista kattavat havainnot ennen tilasta toiseen siirtymistä

Seuraavaksi huomioi mitatessasi siirtymiset tilasta toiseen. Siirtymätavalla on suuri merkitys, kun seuraavassa tilassa on vähemmän piirteitä. Tällöin voit siirtyä tilaan sivuttain tai takaperin tai pysähtymällä hetkeksi ja heiluttamalla laitetta hitaasti tilasta toiseen oviaukossa. Kaikissa näissä tavoissa on tarkoitus osoittaa laitteelle piirteitä molemmista tiloista, jotta ne havaittaisiin oikein toisiinsa nähden (kuva 3).

Kuva 3. Tilasta toiseen voi siirtyä monella tavalla. Sisällä on suositeltavaa siirtyä sivuttain, takaperin tai hetkeksi pysähtymällä oviaukkoon. 

Jokaisella tavalla mitatessa on kuitenkin hyvä hidastaa kävelynopeus kolmannekseen normaalista kävelynopeudesta. Sisällä siirtymiä varten on suositeltavaa avata ovet ennakkoon, mikäli se on mahdollista. Voit kuitenkin avata oven keilauksen aikana, jos teet sen laitteen pimeässä kulmassa. Laitteen pimeä kulma on 90 astetta ja se sijaitsee suoraan keilaimen takana, mittaajan kohdalla. Tämä onnistuu peruuttamalla suljetulle ovelle ja avaamalla ovi niin, että laite osoittaa vastakkaiseen suuntaan. Samalla oviaukosta siirryttyäsi muista olla näyttämättä laitteelle suljettua ovea, jotta SLAM-paikannus säilyy (kuva 4).

Kuva 4. Suljetun oven voi avata mittauksen aikana selän takana laitteen pimeässä kulmassa. Oven avauksen vaiheet etenevät vasemmalta oikealle. Peruuta ensin kohti ovea. Avaa ovi selkäsi takana. Siirry sivuttain oviaukosta pitäen koko ajan liikkuva ovi selkäsi takana. Sulje ovi yhä selkäsi takana. 

Ulkona rakennusta kiertäessä on hyvä osoittaa laitetta rakennuksen kulman suuntaan. Voit myös pieneksi hetkeksi pysähtyä kulmassa, jolloin saadaan enemmän havaintoja kulman molemmin puolin olevista piirteistä (kuva 5).  Mikäli käytössäsi on ZEB HORIZON -laite, ei siirtymätavalla ole niin suurta merkitystä. Tämä johtuu laitteen suuremmasta mittausetäisyydestä (100 m) ja pistetiheydestä (300 000 pistettä/sekunnissa), jolloin piirteistä saadaan enemmän havaintoja nopeankin siirtymisien aikana kuin ZEB-REVO (RT) ja Go -laitteilla (30 m ja noin 43 000 pistettä/sekunnissa).

Kuva 5. Rakennuksen kulmissa kannattaa pysähtyä hetkeksi laitteen osoittaessa kohti kulmaa. 

Välttämällä liikettä ja kiiltoa ympäristössä, vältät ylimääräisen kohinan syntymisen

Käsikeilaimella mitatessa ja mittausta suunnitellessa kannattaa huomioida myös liikkuvat kohteet ja kiiltävät pinnat. Suorituksena on välttää liikkuvia kohteita (esimerkiksi ihmisiä ja liikennettä), mutta aina se ei ole mahdollista. Tällöin kannattaa ajoittaa mittaus ajankohtaan, jolloin liikettä on mahdollisimman vähän. Mikäli mittauksen aikana tapahtuu paljon liikettä, voi aineistoon aiheutua kohinaa ja ongelmia rekisteröinnissä. Erityisen tarkka kannattaa olla hitaan liikenteen kohdalla. Tämä saattaa aiheuttaa kohdistusvirheitä, joten vältä erityisesti hidasta liikennettä ulkona suoritetuissa mittauksissa.

Liikkuvien kohteiden lisäksi on hyvä välttää kiiltäviä pintoja, koska ne voivat aiheuttaa kohinaa pintojen läheisyyteen. Näitä pintoja ovat muun muassa peilit, vesi ja lasipinnat. Mittauksen aikana on suositeltavaa poistaa mahdollisimman monta kiiltävää pintaa. Poistamisen voit toteuttaa kolmella eri tavalla. Kiiltävän pinnan voi peittää esimerkiksi kankaalla. Kiillon määrää voi vähentää sulkemalla verhot ja muuttamalla valaistuksen hajavaloksi. Mikäli et voi aineiston käyttötarkoituksen vuoksi toteuttaa edellisiä vaihtoehtoja, voit aikatauluttaa mittaukset. Kiiltävistä pinnoista syntyy vähiten kohinaa, kun mittaus toteutetaan päiväsaikaan tai ajan hetkenä, jolloin ei ole suoraa auringon valoa.

Pysy aina alle 10 m (ZEB-REVO (RT) ja ZEB Go) tai alle 40 m (ZEB HORIZON) päässä piirteistä

Mittauksen aikana on aina hyvä pysyä mahdollisimman lähellä piirteitä/kohteita, jotta laitteen paikannus saa tarpeeksi havaintoja sijaintinsa määrittämiseen. Suositeltu mittausetäisyys piirteistä on alle 10 m (ZEB-REVO (RT) ja ZEB Go) tai alle 40 m (ZEB HORIZON) päässä keilaimesta (kuva 6).

Mittausetäisyyden lisäksi on aina hyvä suunnata keilain suoraan kohti piirrettä, jotta siitä saadaan varmasti havaintoja. Tämä on erityisen tärkeää, kun mitataan avoimia ympäristöjä kuten puistot, hallit, aulat ja salit. Mikäli näissä ympäristöissä on vähän piirteitä eli niitä ei ole ZEB-REVO (RT) ja ZEB Go -laitteille alle 10 m välein tai ZEB HORIZON -laitteelle alle 40 m välein, kannattaa kohteeseen lisätä piirteitä. Piirteiden suositeltu koko on noin kuutiometri, jotta se voidaan tunnistaa myös pidemmän matkan päästä. Mikäli et ole varma suoriutuuko laserkeilain näillä piirteillä, tee koemittaus. Yleisenä nyrkkisääntönä voidaan sanoa, että SLAM-paikannus selviää 5 s ilman piirteitä. Tämän jälkeen piirteiden puute voi näkyä aineistossa vääristymänä.

Kuva 6. Osoita keilain kohti piirteitä ja pidä piirteet aina alle 10 m päässä ZEB-REVO (RT) ja ZEB Go -laitteiden kanssa ja alle 40 m päässä ZEB HORIZON -laitteen kanssa. 

Varmista kävelytavalla avoimesta ympäristöstä kattavan pistepilven tuottaminen

Avoimissa ympäristöissä piirteiden läheisyyden lisäksi kannattaa huomioida kävelytapa. ZEB-REVO (RT) ja ZEB Go -laitteilla mittausetäisyys on 30 m, joten suuremmissa avoimissa tiloissa suurien silmukoiden sisään voi jäädä aukkoja ilman pistehavaintoja (kuva 7a).

Hyvällä suunnitelmalla voidaan kuitenkin välttää näiden aukkojen syntyminen. Lisäksi ZEB-REVO (RT) ja ZEB Go -laitteiden kanssa tulee muodostaa pienempiä silmukoita kohteiden ympärillä ja välttää suoraan kävelemistä (kuva 7b). Voit kuitenkin tarpeen tullessa kävellä suoraan  sisällä 30 m  tai ulkona 15 m.

ZEB HORIZON -laitteella mitatessa ei tarvitse olla yhtä tarkka kävelytavasta. Tämä johtuu laitteen suuremmasta mittausetäisyydestä ja pistetiheydestä (kuva 7c). On kuitenkin suositeltavaa kävellä ZEB HORIZON laitteella alle 100 m mittaisia matkoja suoraan (kuva 7d). Jos kohteessa täytyy tehdä silmukka pienemmän kohteen ympärillä ZEB HORIZON laitteella, on suositeltavaa tehdä silmukasta minimissään 5 m halkaisijan kokoinen (kuva 7c).

Kuva 7. Suurissa avoimissa tiloissa laite vaikuttaa mittausreittiin. a) ZEB-REVO (RT) ja Go -laitteilla täydennä lyhyempää mittausetäisyyttä silmukoilla, ettei aineistoon jää aukkoja ja b) kävele suoraan maksimissaan 15 m. c) ZEB HORIZON -laitteella ei ole tarvetta silmukoihin ja d) voidaan edetä suoraan pidempiä matkoja (alle 100m) (kuvan aineistot toteuttanut GeoSLAM) 

Koemittauksella voi varmistaa onko kapeassa ympäristössä tarpeeksi piirteitä tarkan pistepilven tuottamista varten

Käytävät voivat olla vähäpiirteisiä ja itseään toistavia ympäristöjä. Mikäli käytävän piirteet ovat alle suositellun kuutiometrin ja kauempana kuin 10 m, on syytä lisätä piirteitä ympäristöön. Käytävällä helppo tapa lisätä piirteitä on avata käytävän ovia. Avattujen ovien tiloissa ei tarvitse käydä, mutta niistä saadaan tarpeeksi piirteitä SLAM-paikannuksen avuksi (kuva 8a). Samoin kuin avoimissa tiloissa kannattaa käytävillä suorittaa koemittaus, jolla selvitetään riittävätkö olemassa olevat piirteet paikannukseen vai täytyykö lisätä vielä enemmän piirteitä. Koemittauksen aikana kannattaa myös kokeilla toimiiko kohteessa paremmin peruuttaminen, koska joskus lähin piirre voi olla keilaajan takana.  Koska aineiston kerääminen SLAM-laserkeilaimella on nopeaa, voi kohteessa helposti tehdä koemittauksen ja varsinaisen keilauksen käytettävissä olevan mittausajan puitteissa.

Kuva 8. Käytäviä mitatessa kannattaa a) avata ovia luomaan piirteitä muuten piirteettömälle käytävälle b) huomioida pistehavaintojen osumakulma, koska pienellä kulmalla pistepilven pistetiheys pienenee eli tasaisen pistetiheyden saamiseksi pyri mittaamaan kaikkialta samalla tavalla kierrellen. 

Käytävien lisäksi muissa kapeissa ympäristöissä kannattaa huomioida samat asiat kuin käytävissä. Lisäksi tunneleissa kannattaa kiinnittää huomiota tunnelin pintamateriaaleihin. Tunnelin pinta voi heijastaa heikosti lasersäteitä, jolloin havainnot jäävät pienemmiksi. Pintamateriaalin lisäksi havaintojen määrään vaikuttaa lasersäteen osumakulma kohteeseen. Osumakulman ollessa alle 15 astetta on havaintojen määrä vähäistä ja pistepilvestä tulee harva (kuva 8b). Lisäksi tunnelit kannattaa mitata pienemmissä osissa, jotta tunneli ei aiheuta rekisteröintiongelmia. Erityisen tärkeää on jakaa tunneli pienempiin osiin, jos mittausta ei voida suorittaa suljettuna kierroksena.

 Nostamalla keilainkorkeutta saadaan tiheämpi pistepilvi korkeista julkisivuista

Samalla tavalla kuin kapeissa tunneleissa tai käytävillä lasersäteen osumakulma vaikuttaa pistepilven tiheyteen.

Alle 15 asteen osumakulmalla pistetiheys on huomattavasti heikompi kuin suuremmilla osumakulmilla. Tästä syystä korkeita julkisivuja mitatessa, voidaan kasvattaa julkisivun yläosassa osumakulmaa nostamalla keilainta.

Keilain voidaan nostaa korkeammalle esimerkiksi kiinnittämällä se teleskooppitangon päähän. Tällöin osumakulma julkisivun yläosassa suurenee ja pistepilven tiheys kasvaa (kuva 9). Näin voidaan samalta etäisyydeltä mitatessa kerätä tiheämpää pistepilveä korkeiden julkisivujen yläosista.

GeoSLAM, seinän skannaaminen

Kuva 9. Pistehavaintojen osumakulma näkyy pistepilvessä helpoiten julkisivuissa. Alle 15 asteen osumakulmalla pistetiheys on heikompi kuin suuremmalla kulmalla. Osumakulmaa voi kasvattaa nostamalla keilaimen tangon päähän tai mittaamalla kauempaa, mikäli se on mahdollista. 

Vaikeakulkuisien tilojen mittaamiseksi GeoSLAM-laitteen voi kiinnittää erilaisiin alustoihin

Vaikeakulkuisia tai ahtaita tiloja ovat muun muassa kellarit, viemärit ja luolat. Ympäristö voi olla vaikeakulkuinen, koska sinne ei pääse jalan tai siellä ei voi muodostaa suljettua mittauskierrosta. Tällöin laite voidaan kiinnittää erilaisiin alustoihin kuten kauko-ohjattavaan robottiin, teleskooppitankoon tai kelkkaan. Näiden erilaisten alustojen avulla voidaan laite viedä vaikeakulkuiseen ympäristöön ja saadaan kattava pistepilvi myös näistä ympäristöistä. Mikäli vaikeakulkuiseen tilaan pääsee jalan, kannattaa mittaus suorittaa hitaasti kävellen ja siirtyä tilasta toiseen sivuttain tai takaperin.

Ahtaissa tiloissa pistepilveen vaikuttaa laitteiden pienin mittausetäisyys. Tämä mittausetäisyys on 20 cm ZEB-REVO (RT) tai ZEB Go -laitteilla ja 40 cm ZEB HORIZON -laitteella. Tästä syystä ZEB-REVO (RT) tai ZEB Go -laitteet saavat enemmän havaintoja ahtaissa tiloissa. Lisäksi ne ovat fyysiseltä kooltaan pienempiä, joten ne mahtuvat ahtaampiin ympäristöihin kuin ZEB HORIZON -keilain.

Mittauksen jälkeen, ahtaat tilat tulee huomioida myös aineiston prosessoinnissa. Tämä onnistuu muuttamalla prosessointi asetuksista “bounding box” kokoa pienemmäksi. “Bounding box” kattaa oletuksena ihmisen kokoisen alueen (kuva 10). Tämän sisällä olevat pisteet eivät tule mukaan pistepilveen, mutta ne säilyvät ohjelmiston muistissa.

GeoSLAM-mittaukset

Kuva 10. Oletus “bounding box” sisältää ihmisen kokoisen alueen. 

Tämän sisällä olevat pisteet jätetään pois pistepilvestä,
joten ahtaissa tiloissa täytyy pienentää “bounding box” kokoa.

Jos kohdetta ei saa kokonaan mitattua 20-30 minuutin aikana, jaa mittaus osiin

Mikäli ympäristön mittaaminen yhdellä GeoSLAM-mittauskierroksella ylittää 20-30 minuutin rajan, on suositeltavaa jakaa mittaus pienempiin osiin. Yhden 20-30 minuutin mittauskierroksen aikana voidaan mitata kävelynopeudella edetessä noin kahden kilometrin matka. Mittauksen osiin jakamisen tulee huomioida jo suunnitteluvaiheessa. Silloin tulee miettiä kuinka moneen erilliseen mittaukseen mittaus täytyy jakaa ja minne sijoitetaan erillisten mittausten välinen päällekkäisyysalue. Tällä päällekkäisyysalueella pitää olla mahdollisimman monta toisistaan tunnistettavaa piirrettä. Mittauksia suunnitellessa täytyy huomioida, että erillisten mittausten päällekkäisyysalueen tulee olla 30 % koko mittausalueesta. Päällekkäisyysalueen avulla voidaan jälkikäsittelyssä yhdistää erilliset mittaukset yhdeksi pistepilveksi esimerkiksi merge-työkalulla GeoSLAM Hub-ohjelmistossa.

Käytännössä on suositeltavaa aloittaa kaikki mittaukset samasta paikasta. Valitse aloituspaikka läheltä alueen keskikohtaa esimerkiksi monikerroksisessa rakennuksessa kannattaa aloittaa mittaus keskimmäisestä kerroksesta ja edetä sieltä eri mittauksina alas ja ylös (kuva 11). Lisäksi kannattaa sammuttaa laite jokaisen erillisen mittauskierroksen välissä. Laitteen sammuttaminen nollaa laitteen pistepilven pisteille antaman aikaleiman, jolloin niihin ei voi syntyä virhettä ja prosessointi on helpompaa.

GeoSLAM-mittaukset eri kerroksissa

Kuva 11. Neljä kerroksisen rakennuksen mittauksen voi jakaa neljään mittaukseen. Kerrosten mittaukset ovat merkitty väreillä: kellari turkoosilla, ensimmäinen kerros oranssilla, toinen kerros violetilla ja ullakko vihreällä. Kerroksien 1, 2 ja ullakko mittaukset aloitettiin samasta paikasta 2. kerroksesta ja kellarin mittaus aloitettiin 1. kerroksesta.

Käy nämä kysymykset läpi aina ennen mittausta

SLAM-laserkeilaimilla mittaaminen on helppoa, kun mittauksen suunnittelee ennakkoon ja pohtii vastaukset seuraaviin kysymyksiin.

  1. Onko mahdollista sulkea mittauskierros?
  2. Riittääkö kohteen mittaamiseen yksi maksimissaan 20-30 minuutin mittaus?
  3. Kuinka monella mittauksella alue saadaan kartoitettua ja missä on mittausten välinen päällekkäisyysalue?
  4. Ovatko piirteet koko mittauksen aikana alle 10 metrin (ZEB-REVO (RT) tai ZEB Go) tai alle 40 metrin (ZEB HORIZON) etäisyydellä laitteesta?
  5. Onko kohteessa kiiltäviä tai liikkuvia piirteitä?
  6. Voiko kohteen muoto aiheuttaa haasteita?

Hyvän suunnitelman kanssa voit huoletta mitata käsikeilaimilla. Muista kuitenkin aina ennen mittausta avata kaikki ovet, jotta suunniteltu mittauskierros on mahdollinen. Varmista mittauksen aikana mahdollisimman tarkka pistepilvi luomalla suljetun mittauskierroksen sisälle pienempiä silmukoita. Muista myös vaihtoehto kierrosten tekemiseen kerrosten välillä. Vältä suoraan kävelemistä, mutta pakon edessä voit kulkea alle 15 m (ZEB-REVO RT tai ZEB Go) tai alle 100 m (ZEB HORIZON) matkan suoraan. Varmista laitteen näkyvyys piirteisiin osoittamalla keilaimella niiden suuntaan ja pysymällä piirteiden läheisyydessä. On myös hyvä tunnistaa kohteet, jotka ovat SLAM-laserkeilaimelle haastavia kuten avoimet tilat, kapeat käytävät, korkeat julkisivut, liikkuvat kohteet ja kiiltävät pinnat. Tee aina koemittaus, jos et ole varma kuinka laite suoriutuu kohteesta. Koemittauksen jälkeen lisää piirteitä tarpeen mukaan, valitse sopivampi mittausalusta liian ahtaisiin tiloihin, vältä liikettä ja peitä kiiltävät piirteet. Näillä ohjeilla onnistut käsikeilaimilla tehtävistä mittauksista. Luo siis hyvä suunnitelma, tee koemittaus ja toteuta varsinainen mittaus tarkasti suunnitelman ja paikalla tehtyjen havaintojen pohjalta.

Trimble MX9 -mobiilikartoitusjärjestelmä tutuksi – Osa 3: Trimble MX9-järjestelmän operointi

Kirjoittaja: Sakari Mäenpää

Tässä blogisarjassa tutustutaan Trimblen MX9-mobiilikartoitusjärjestelmään, sen ominaisuuksiin, operointiin ja käyttösovelluksiin. Sarjan kolmannessa osassa käsitellään tiedonkeruuta eli järjestelmän operointia TMI-ohjelmistolla.

Mobiilikartoituksen työnkulku tiedonkeruusta valmiiksi lopputuotteiksi on suoraviivainen prosessi, jossa hyödynnetään useita eri sovelluksia (Kuva 1). Tiedonkeruun jälkeen ajoneuvon liikerata prosessoidaan POSPac -ohjelmistossa hyödyntämällä jälkilaskentaa ja Trimnet-tukiasemadataa. Tämän jälkeen tuotetaan värjätty ja georeferoitu pistepilvi Trimble Business Centerissä. Tarpeista riippuen pistepilven jatkojalostamiseen ja varsinaisten lopputuotteiden tekemiseen on useita vaihtoehtoisia sovelluksia, joista yleisimpiä TBC:n lisäksi ovat Terrasolidin ja Trimble MX -ohjelmistot.

Kuva 1. Mobiilikartoituksen työnkulussa hyödynnetään useita eri ohjelmistoja.

Edellistä sukupolvea edustavan MX8 -järjestelmän operointi edellytti usean tietokoneen, ohjelman ja näytön järjestelmää, joka täytti ison osan auton tavaratilasta (Kuva 2). Trimble MX9 -järjestelmässä käytetään TMI (Trimble Mobile Imaging) -ohjelmistoa, joka on tuttu kuvapohjaisesta MX7-järjestelmästä ja on käytössä myös juuri esitellyssä MX50-järjestelmässä. Yhtenäinen käyttöliittymä suoraviivaistaa ja yksinkertaistaa eri järjestelmien käyttöä. Kun osaat yhden Trimblen mobiilikartoitusjärjestelmän käytön, on helppo siirtyä käyttämään toista järjestelmää, koska käyttölogiikka on kaikissa samanlainen. Nykyaikaisen mobiilikartoitusjärjestelmän operointi sujuu mittausalan ammattilaiselta lyhyen perehdytyksen jälkeen.

Kuva 2. Edellisen sukupolven MX8 vaati ison tietokonejärjestelmän (vasemmalla), mutta MX9:n operointiin riittää tabletti.

TMI on nykysuuntauksen mukaisesti selainpohjainen (Kuva 3), joten mitään ohjelmia ei tarvitse asentaa tietokoneelle, vaan sovellus on asennettu MX9:n kontrolliyksikköön. Käyttöliittymänä kontrolliyksikköön ja TMI-ohjelmistoon voidaan käyttää mitä tahansa selaimella varustettua päätelaitetta, joka tyypillisesti on kannettava tietokone tai tabletti. Hätätapauksessa myös älypuhelimella on mahdollista operoida järjestelmää, mutta tässä tapauksessa näytön koko asettaa omat haasteet käytettävyydelle. Vaikka MX9-järjestelmän operointi on helppoa, turvallinen käyttö vaatii kaksi henkilöä: kuljettaja keskittyy auton ajamiseen ja operaattori järjestelmän operointiin.

Kuva 3. TMI on helppokäyttöinen selainpohjainen sovellus MX9:n operointiin.

Käytettävä päätelaite liitetään kontrolliyksikköön joko wifi-yhteydellä tai ethernet-kaapelilla. Kontrolliyksikkö muodostaa kaksi wifi-verkkoa, joista toista käytetään päätelaiteyhteyteen ja toisen avulla kontrolliyksikkö voi muodostaa internetyhteyden hotspotin kautta. Internetyhteyttä tarvitaan esimerkiksi online-taustakarttojen käyttämiseen TMI:ssä.

Ennen varsinaisen mittaustehtävän aloittamista syötetään ajoneuvon perustiedot ja luodaan tarvittaessa tiedonkeruuta varten parametrit. Nämä ovat usein kertaluonteisia työvaiheita samaa ajoneuvoa käytettäessä ja samantyyppisissä projekteissa. Asennuksen yhteydessä on mitattu järjestelmän korkeus sekä mahdollisten lisälaitteiden (GAMS, DMI) asema järjestelmän 3D-koordinaatistossa. Nämä tiedot syötetään ohjelmistoon luomalla ajoneuvoprofiili, joka valitaan tiedonkeruun alussa. Tiedonkeruussa on mahdollista käyttää ennalta luotuja vakioprofiileja tai luoda omat mittausasetukset kameroille ja laserkeilaimille (Kuva 4).

Kuva 4. Asetuksissa voidaan määrittää kameroiden kuvanottoväli ja laserkeilaimien mittausasetukset.

Kun asetukset on syötetty, luodaan mittaussessio antamalla sille nimi ja valitsemalla ajoneuvoprofiili ja käytettävät mittausasetukset. Mittaussession alussa paikannusjärjestelmä ei ole alustettu (Kuva 5) ja tämä edellyttää tyypillisesti muutaman minuutin ajoa hyvässä GNSS-ympäristössä. Ajoon sisällytetään ajomanöövereitä, kuten voimakkaampia kiihdytyksiä, jarrutuksia sekä käännöksiä, jotka nopeuttavat alustuksen saamista. Paikannustiedon tallennus käynnistyy automaattisesti mittaussession luonnin yhteydessä, kunhan riittävä määrä satelliitteja on mukana ratkaisussa.

Kuva 5. Mittaussession alussa GNSS/IMU-järjestelmä ei ole alustettu, mikä ilmenee punaisena navigointikuvakkeena sivupalkissa oikealla.

Kun järjestelmä on alustettu, muuttuu navigointikuvake vihreäksi ja sitä painamalla saa tarkempaa tietoa paikannuksen tilasta (Kuva 6). Navigointikuvake pysyy vihreänä, kunhan kaikki neljä indikaattoria ovat vihreällä alueella. Järjestelmä on nyt valmis sensoritiedon tallennukseen.

Kuva 6. Navigointikuvake on vihreä ja järjestelmä on valmis tiedon tallennukseen. Oikean alakulman tallennuspainikkeella käynnistyy sensoridatan tallennus.

Kun järjestelmä on alustettu ja valmis tiedonkeruuseen, operaattori käynnistää ja lopettaa sensoridatan tallennuksen painamalla oikean alakulman tallennuspainiketta (Kuva 7). Sijaintitiedon tallennus jatkuu automaattisesti niin kauan kuin järjestelmä on käynnissä eikä operaattori pysty siihen vaikuttamaan. Tallennus kannattaa jakaa loogisiin osiin eli runeihin (run) esimerkiksi kaduittain tai alueittain, mikä helpottaa datan jatkokäsittelyä. TMI-ohjelmiston karttaikkunassa kulku-ura näkyy paksulla viivalla, jos sensoridatan tallennus on ollut käytössä.

Tiedonkeruun aikana operaattori voi tarkkailla paikannustiedon lisäksi sensoridataa eli kameroiden kuvia tai laserkeilaimien profiileja ja varmistaa onnistuneen tiedonkeruun ja kuvien oikean valotuksen. Navigointikuvake voi hetkellisesti muuttua vihreästä oranssiksi, mutta tämä ei aiheuta toimenpiteitä tiedonkeruussa. Jos järjestelmää operoidaan huonossa GNSS-ympäristössä, esimerkiksi suurempien kaupunkien keskustojen katukuiluissa tai puuston varjostamilla alueilla, kannattaa tiedonkeruun aikana käydä säännöllisesti hyvässä GNSS-ympäristössä hakemassa hyvä GNSS-ratkaisu.

Tiedonkeruun aikana operaattorilla on mahdollista syöttää kommentteja, jotka tallentuvat aikaleimattuna mittaustietokantaan. Esimerkiksi tiedonkeruun aikana olosuhteissa tapahtuneet muutokset tai muut huomionarvoiset tapahtumat voidaan näin tallentaa tiedoksi aineiston käsittelijälle. Session aikana, tallennusjaksojen välissä, on myös mahdollista muuttaa mittausasetuksia, joten samaan sessioon on mahdollista tallentaa eri parametreilla kerättyä tietoa. Järjestelmän alustusta ei näin tarvitse tehdä uudestaan.

Kuva 7. Sensoridatan tallennus on päällä, joten oikean alakulman tallennuspainike on punainen ja karttaikkunassa ajorata piirretään paksulla viivalla. Operoinnin aikana operaattori voi tarkastella sensoreiden tuottamaa raakadataa.

Kun tiedonkeruu on valmis, lopetetaan mittaussessio ja ajetaan järjestelmä hallitusti alas ennen virran sammuttamista. Kaikki tieto mittaussession aikana on tallentunut kontrolliyksikön (Kuva 8) kahdelle irrotettavalle SSD-levylle. Jos järjestelmään kuuluu varalevyt, voidaan nämä vaihtaa tilalle ja jatkaa tiedonkeruuta keskeytyksettä ja aloittaa datan käsittely.

Kuva 8. Mittausaineisto tallentuu kontrolliyksikön kahdelle SSD-levylle (5). Levyt voidaan irrottaa ja vaihtaa uusiin, jolloin aineiston käsittely voidaan aloittaa ja jatkaa tiedonkeruuta.

Blogisarjan seuraavassa osassa käsitellään kulku-uran laskentaa ja pistepilviaineiston tuottamista.

GeoSLAM-pistepilvestä koordinaatistoon

Kirjoittaja: Aino Keitaanniemi

Sisätiloissa ja maan alla, jossa satelliittipaikannus on vaikeaa, voidaan kerätä pistepilviä GeoSLAM-laitteistoilla. Nämä mobiililaserkeilaimet hyödyntävät paikantamiseensa SLAM-algoritmia, joten ne toimivat myös paikoissa, joissa satelliittipaikannuksessa on puutteita. Tästä johtuen GeoSLAM-laitteilla luodut pistepilvet ovat automaattisesti täysin satunnaisessa koordinaatistossa mittauksen aloituspaikkaan nähden. Useissa käyttötarkoituksissa on kuitenkin tärkeää saada pistepilvi todelliseen koordinaatistoon. Tämä voidaan toteuttaa lisäämällä aineiston keruuseen tähyspisteitä monilla eri tavoilla.

Tähykset voivat olla tyypiltään pallotähyksiä, shakkiruututähyksiä tai tunnettuja pisteitä (esimerkiksi naula), jos hyödynnät keilaimeen kiinnitettäviä referenssitasoja. Referenssitason avulla voidaan GeoSLAM-laite kohdistaa tähyksen tai koordinaateiltaan tunnetun pisteen kohdalle. Pallotähyksiä ja referenssitasoa voidaan käyttää kaikilla GeoSLAM-laitteilla. Ainoastaan shakkiruututähykset poikkeavat tästä. Niitä voidaan käyttää vain ZEB Horizon -keilaimen kanssa, koska laite kerää myös intensiteettitiedon (kuva 1). Tämä mahdollistaa shakkiruututähysten tunnistamisen pistepilviaineistosta.

Kuva 1 Kaikkia GeoSLAM-laitteita voidaan georeferoida pallotähysten ja referenssitason avulla, mutta GeoSLAM ZEB Horizonin kanssa toimii myös shakkiruututähykset.

Tähysten tyypistä huolimatta georeferoinnissa eli globaaliin koordinaatistoon sitomisessa hyödynnetään samoja periaatteita. Tähyspisteet ovat pisteitä, joiden globaalit koordinaatit tunnetaan. Tämä tieto voidaan kerätä esim. GNSS-vastaanottimella tai takymetrilla. Jotta tähyspisteillä voidaan georeferoida pistepilvi mahdollisimman tarkasti, tulee tähyspisteitä asentaa kohteeseen vähintään kolme mahdollisimman kattavasti. Paras georeferointitulos saadaan, kun koordinaattipisteet ovat mahdollisimman isolla pistepilven alueella. Useammilla tähyspisteillä voidaan ensin sitoa pistepilvi globaaliin koordinaatistoon. Tämän jälkeen pisteitä, joita ei käytetty georeferoinnissa, voidaan käyttää tarkastellaksemme georeferoinnin tarkkuutta. On siis aina hyvä kerätä mahdollisimman monta georeferointipistettä.

Georeferointi mittauksen aikana

Georeferoidessa GeoSLAM-laitteella kerättyä pistepilveä, tulee georeferoiminen  huomioida jo mittauksen aikana. Ennen mittausta täytyy kohteeseen asentaa tähyspisteet ja mitata niiden globaalit koordinaatit. Esimerkiksi pihapiirissä (kuva 2) tähyksiä asennettiin yhteensä viisi ja ne mitattiin GNSS-vastaanottimella. Tämän jälkeen toteutetaan GeoSLAM laitteella mittaus. Mittauksen aikana varmistetaan tähysten kattava näkyvyys pistepilvessä. Tämä onnistuu osoittamalla laitetta kohti tähystä ja esim. pallotähysten kohdalla kiertämällä tähyksen ympäri. Muilta osin GeoSLAM mittaus voidaan tehdä normaalisti.

Kuva 2. Tähyspisteitä tarvitaan vähintään kolme ja ne tulee sijoitella mittausalueelle mahdollisimman kattavasti.

Referenssitason kanssa mitatessa toimintatapa eroaa hieman. Tällöin GeoSLAM laite lasketaan tähyksen kohdalle noin 10 sekunniksi. Tämän seurauksena laite luo automaattisesti pisteen tähyksen kohdalle. Tähän automaattiseen pisteeseen voidaan yhdistää erikseen mitattu globaali koordinaatti GeoSLAM Hub -ohjelmistossa. Referenssitasoa käyttäessä täytyy huomioida, että taso on laitekohtainen. Tällä tarkoitetaan sitä, että ZEB Revo/Go käyttää eri referenssitasoa kuin ZEB Horizon (kuva 3). Laitekohtainen referenssitason ja laserkeilaimen keskipisteen välinen sijaintiero määrittyy ohjelmistossa automaattisesti tunnistamansa laitteen pistepilven mukaan. Mikäli käytössä olisi laitteelle väärä referenssitaso, olisi georeferoinnin tuloksessa automaattisesti virhe tämän sijaintieron vuoksi. Lisäksi tähysten sijoittelu täytyy huomioida laitteittain. ZEB Revo/Go -laitteilla referenssitasolla mitattavien tähysten tulee olla vaakapinnoilla.

Kuva 3. ZEB Revo RT ja ZEB Horizon käyttävät eri referenssitasoa. Älä siis käytä tasoja ristiin.

Tähyspisteiden tyyppien edut

Koska georeferointitapoja on monia, kannattaa valita menetelmä kohteen ja siitä tuotetun aineiston käyttötarkoituksen mukaan. Mikäli aineisto halutaan georeferoida, mutta pistepilvessä ei saisi näkyä tähyksiä, paras vaihtoehto on käyttää referenssitasoa. Referenssitasolla voidaan merkitä aineistoon pienetkin tähykset esimerkiksi naulan kannat. Toisaalta pallotähyksiä voidaan myös käyttää georeferoinnissa ja poistaa ne sen jälkeen pistepilvestä. Pistepilvestä tähyksen poistamisen suhteen shakkiruututähykset ovat vaikeimpia, koska ne tulee asettaa tasopinnoille ja sen seurauksena tähyksen poistaminen poistaa sen kohdalta myös kaikki pistehavainnot.

Mittaamisen aikana pallotähysten etu on se, että tähys on kaikista suunnista katsottuna samanlainen. Tästä syytä kattavan aineiston saaminen pallotähyksestä on suhteellisen helppoa. Jotta pallotähys voidaan tunnistaa, riittää että pallosta on suurin osa havaittu keilauksen aikana. Kun tähän verrataan shakkiruututähystä, vaatii sen mittaaminen enemmän keskittymistä aineistoa luodessa.  Keilauksen aikana on mahdollista jättää shakkiruututähyksiä havainnoitta, koska ne ohitettiin liian nopeasti tai ne jäivät osittain laitteen pimeän kulman taakse. Kohdista siis laite suoraan tähystä kohden, jotta varmistat havainnot ja tähyksen tunnistamisen.

Hyvin mitatusta pistepilvestä voidaan useissa kolmannen osapuolen ohjelmistoissa (Kuten Trimble RealWorks) tunnistaa automaattisesti sekä pallo- että shakkiruututähyksiä. Automaattisen tunnistamisen jälkeen kannattaa tarkistaa tunnistetut tähykset, jotta mahdolliset virhetunnistamiset huomataan. Tämän jälkeen tähyspistehavaintoihin voidaan yhdistää georeferoinnin koordinaatit ja siirtää pistepilvi haluttuun koordinaatistoon.

Referenssitason kanssa georeferoidessa voidaan käyttää tähyksinä luonnollisia piirteitä kuten tasojen kulmia sisällä ja tiemaalauksia ulkona. Tämä on mahdollista, koska mittauksen aikana käyttäjä kohdistaa referenssitason ristikon tähyksen keskipisteeseen ja laite luo automaattisesti kyseiselle kohdalle tähyspisteen pistepilveen. Näihin automaattisesti luotuihin tähyspisteisiin voidaan yhdistää globaalit koordinaatit suoraan GeoSLAM Hub-ohjelmistossa pistepilven prosessoinnin aikana. Eli georeferointi onnistuu referenssitason kanssa yhdessä ohjelmistossa. Näistä syistä referenssitasolla voidaan säästää aikaa georeferoinnissa, koska tähyksiä ei välttämättä tarvitse asentaa kohteeseen kuten pallo- tai shakkiruututähyksiä ja prosessointi voidaan toteuttaa kokonaan yhdessä ohjelmistossa. Lisäksi referenssitaso antaa joustavuutta luonnollisten tähysten ja kontrollipisteiden koordinaattien mittaamiselle, koska niiden koordinaatit voidaan mitata joko ennen SLAM-mittausta tai sen jälkeen.

Joissakin tilanteissa georeferointimenetelmien yhdistämisestä saadaan etuja. Ulkona voidaan esimerkiksi yhdistää shakkiruututähykset ja referenssitaso. Kuvassa 4 on yhdistetty GeoSLAM Horizon referenssitason ja Aeropoints-tähyksien kanssa. Tässä yhdistyvät laitteiden parhaat puolet. Aeropoints-tähykset keräävät itsessään tiedon omasta globaalista koordinaatistaan, joten näitä tähyksiä käyttäessä ei tarvitse erikseen mitata tähysten sijainteja esimerkiksi GNSS-vastaanottimella. Referenssitasolla havaittu Aeropoints-tähys luo tähyksen kohdalle automaattisen tähyspisteen pistepilveen, joten Aeropoints tähyksen keräämä sijaintitieto on helposti yhdistettävissä automaattiseen GeoSLAM-tähyspisteeseen.

Kuva 3. ZEB Horizon Aeropoints-tähyksen päälle asetettuna.

GeoSLAM-laitteiden georeferoinnissa hyödynnetään samoja periaatteita kuin muidenkin pistepilvien kanssa. Koordinaattipisteitä tulee olla vähintään kolme ja niiden tulee sijoittua mahdollisimman laajasti pistepilven alueella. Lisäksi on aina hyvä kerätä enemmän kuin minimivaatimus  tähyshavaintoja. Ylimääräisillä havainnoilla voi tarkastella georeferoinnin tarkkuutta. Globaalit koordinaattipisteet voidaan merkitä erilaisilla tähyksillä tai ne voidaan mitata GeoSLAM-pistepilveen referenssitasolla. Kun pistepilvesi sisältää georeferointiin tarvittavat tähykset ja niille on erikseen mitattu koordinaatit, voidaan georeferointi toteuttaa missä tahansa pistepilviohjelmistossa. Valitse siis käyttötarkoituksesi ja käytössäsi olevan laitteen mukaan sille sopiva georeferointimenetelmä.

Kirjoittaja

Aino Keitaanniemi, DI

GeoSLAM ZEB-HORIZON

Käsikeilain

GeoSLAM ZEB-REVO RT

Käsikeilain

Pieni piste – pistepilvien molekyyli

Kirjoittaja: Tom Steffansson

Pistepilvien tuotannossa käytetään suureellisia termejä. Laserkeilaushanke, keilausprojekti, pistepilvi, keilausdata jne. Tietysti näin. Suuren tietomäärän vuoksi pienikin pistepilviprojekti on tavallaan iso. Pienissäkin aineistoissa lähdetään liikkeelle miljoonista pisteistä ja isoissa pyöritään miljardeissa. Isot kokonaisuudet pyörivät mielessä. Pienet purot yhtyvät suureksi joeksi, mutta pienikin puro muodostuu yksittäisistä vesimolekyyleistä, ja nekin voidaan pilkkoa osiin. Niin voidaan pistepilven molekyylikin, yksi pieni piste, jonka koostumus voi vaihdella paljon verrattuna H2O-molekyylin muutamaan atomiin. Tuleeko pistepilviaineistojen käyttäjille koskaan mieleen tutustua tarkemmin yhteen pikkuruiseen pisteeseen, joka on miljoonien samankaltaistensa joukossa? Sen sisältämä moninainen ominaisuustieto saattaa yllättää. Perinteisessä mittauksessa standardin maineen saanut GT-formaatti kalpenee attribuuttikenttiensä puolesta verrattuna laserkeilauksen yleisimpien formaattien, kuten LAS ja LAZ, tukemiin attribuutteihin.

Tarkastellaan aihetta käytännöllisesti.

Liikkuvilla laitteilla tuotetut pistepilvet sisältävät yleisesti tiettyjä vakioattribuutteja kuten aikaleiman, intensiteetin, kaiun numeron ja kaikujen lukumäärän, peilikulman sekä keilannumeron. Jotkut sensorijärjestelmät saattavat tuottaa attribuutteja, jotka ovat käytössä vain sen omassa post-prosessointi ohjelmistossa.

Jotta tämä ei olisi liian yksinkertaista, pikkuruinen piste saa jatkokäsittelyssä lisää kuormaa kannettavakseen. Laskenta-algoritmit tuottavat eri luokittelutarkoituksiin uusia arvoja pisteille, joita voidaan jatkoprosessoinnissa hyödyntää. Esimerkiksi saadaan fotogrammetrisen pistepilven käsittelyssä luotettavampi maanpinta. Tunnelin lattia-, seinä- ja kattopinnat luokittuvat paremmin. Yksittäisten objektien manuaalinen luokittelu nopeutuu ryhmänumeroinnin ansiosta, muutamia esimerkkejä mainitakseni.

Tarkastellaan Terrasolidin TerraScan-sovelluksen roolia aiheessa olennaisilta osilta:

TerraScan-sovelluksen rooli ja attribuutit

TerraScanin tavalla tai toisella tukemat attribuutit ovat alla listattuna. Lihavoitettuna ovat  attribuutit, joita vain TerraScanin Fast Binary Format (FBI) tukee verrattuna ns. standardeihin formaatteihin.

  • pisteluokka
  • lentoratanumero
  • aikaleima
  • kaikutyyppi
  • intensiteetti
  • Rieglin extra-bitti: pulssin muotovaihtelu, heijastavuus, kaiun pituus, kaiun poikkeavuus
  • RGB-värit
  • HSV-värit
  • keilauskulma pystysuorasta
  • kaiun numero
  • skannerin numero
  • kaiun pituus
  • kaiun sijainti
  • peilikulma
  • käyttäjän data
  • etäisyys esim. maanpintaan tai vektorielementtiin (muodostuu käsittelyssä)
  • ryhmänumero (muodostuu käsittelyssä)
  • pisteen värjänneen kuvan numero (muodostuu käsittelyssä)
  • normaalivektori (muodostuu käsittelyssä)
  • kasvillisuusindeksi (muodostuu käsittelyssä)

Käyn läpi eräitä yleisimpiä attribuutteja, joita esiintyy lähtödatassa ja joita syntyy prosessoinnin tuotteena normaalissa prosessointityöskentelyssä, jossa melko rutiininomaisesti tuotetaan hyviä ja toimivia lopputuotteita, menemättä käsittelyssä aivan äärimmäisyyteen. Äärimmäisyydellä tarkoitan sitä, että otetaan olemassa olevasta ja lasketusta tiedosta kaikki mahdollinen irti, haluttaessa automaattisesti niin hyvä lopputulos kuin mahdollista.

Aikaleima

Tallentuu ilma- ja mobiili- ja käsikeilauksessa laserpisteille sekä lento-, ajo- ja kävelyradoille. Aikaleimaa käytetään mm. ratanumeron päättelyssä laserpisteille. Aikajärjestelmä yleensä standardi GPS-aika tai GPS-viikkoaika. Aikaleimat voidaan konvertoida toiseen aikajärjestelmään.

Kaikutyyppi

Yksi ammuttu lasersäde voi antaa useita heijastumia takaisin. Osa säteestä osuu esim. puun lehvästön ensimmäiseen pintaan (First echo). Osa säteestä, koska säteen footprintti leviää ilmakehän molekyylien takia, jatkaa matkaa ja heijastuu edelleen lehvästön pinnasta (Intermediate echo) (näitä osumia voi skannerista riippuen tallentua useampiakin). Viimeinen heijastuma (Last echo) on todennäköinen maanpinta tai voi myös olla kohde maanpinnan yläpuolella, josta säde ei enää jatku eteenpäin. Tiheä lehvästö voi antaa vain yhden heijastuman (Only echo). Kaikutiedolla voidaan luokitella potentiaaliset maanpinnan osumat ennen lopullista maanpinnan luokittelua. Potentiaalisia maanpinnan osumia ovat luonnollisesti Last of many ja Only echo -kaiut. Intermediate kaiut ovat First ja Last of Many kaikujen välissä.

Yhdestä laserpulssista palautuneet heijastumat ylä- ja leikkausnäkymässä.

 

Etäisyys esim. maanpintaan tai vektorielementtiin

Aikaisemmin maanpinnan yläpuoliset pisteet suhteellisella korkeudella maanpinnasta luokiteltiin vertaamalla pisteiden pystysuoria etäisyyksiä maanpinnan pintamalliin. Uudemmassa vastaavassa luokittelussa pisteille lasketaan ensin pystysuora etäisyysattribuutti. Tämän jälkeen maanpinnan yläpuoliset pisteet luokitellaan etäisyydellä maanpinnasta tuon attribuuttitiedon avulla. Tyypillisesti matala-, keskikorkea ja korkea kasvillisuus. Etäisyys voidaan laskea myös muilla periaatteilla. Esimerkiksi 3D-etäisyys vektorielementtiin kuten ilmajohtoihin.

Etäisyysvärjäys pisteillä maan pinnasta, joka on samalla värjätty intensiteettiarvoilla.

 

Ryhmänumero

TerraScan määrittää ryhmänumerot erillisille pistepilvimuodostumille, kuten kadun kalusteille, rakennusten pinnoille, muille objekteille ja puustolle. Tämä auttaa mainittujen kohteiden automaattiluokittelussa ja nopeuttaa myös objektien manuaalista luokittelua. Osoittamalla esim. liikennemerkin yhtä pistettä, kaikki kyseisen liikennemerkin pisteet luokittuvat liikennemerkkiluokkaan. Olettaen tietysti, että ryhmänumeroiden määrittelyssä tietyn objektin pisteille toiminto on päätellyt saman ryhmänumeron. Ryhmiä voidaan yhdistellä ja tuhota.

Ryhmävärjäyksellä yksittäiset kalusteet ja puusto erottuvat kukin omana ryhmänä.

 

Pisteen värjänneen kuvan numero

Pisteen värjäyksessä käytetyn kuvan numero vihreällä kuullotetussa sarakkeessa.

 

Normaalivektori

Arvo, joka kuvaa pinnasta kohtisuoraan lähtevän vektorin suuntaa. Ohjelma hyödyntää sitä eri rakenteiden pintojen luokittelussa. Käytetään mobiilikeilattujen tienpintojen uraisuuden ja muiden epämuodostumien kohtien analysointiin. Alla olevassa kuvassa kattopintojen pisteillä normaalivektorivärjäys. Esim. automaattisesti vektoroitujen rakennusten tarkastamisessa operaattori ymmärtää paremmin top-näkymässä katon muodot.

Interaktiivisessa työskentelyssä rakennuksen kattojen osat erottuvat selkeästi.

 

Kasvillisuusindeksi

Tallentuu etäisyys-attribuutiksi, kuten esimerkiksi maanpinnan yläpuolisten pisteiden kohtisuorat etäisyydet maanpintaan. Kasvillisuusindeksin avulla saadaan erityisesti fotogrammetristen pistepilvien maanpinnan luokittelussa luotettavampi lopputulos. Pistepilvi voidaan värjätä kasvillisuusindeksillä. TerraScan voi määrittää kymmenen värikanavaa joka pisteelle. Mikäli kuvilla on myös infrapunavärit, tällöin niillä on neljä värikanavaa: R G B NIR. Infrapunakanavan avulla saadaan luotettavimmat kasvillisuusindeksiarvot.

Kasvillisuusindeksillä värjätyt pisteet. Vihreä väri ei potentiaalista maanpintaa.

Katsotaan mitä standardiattribuutteja eri sensorijärjestelmät normaalisti tallentavat loppuprosessointiin exportattaville pisteille ja mitä syntyy lisää TerraScanin käsittelyssä.

Ilmakeilauksen pisteillä on tyypillisesti seuraavat alkuperäiset attribuutit:

  • XYZ
  • aikaleima
  • kaikutiedot
  • intensiteetti
  • peilikulma

Jatkokäsittelyssä pisteelle syntyy mm. seuraavia attribuutteja

  • luokittelun tuloksena pisteluokkanumero
  • RGB-värit, jos ilmakuvat käytettävissä
  • lentoratanumero
  • pisteiden etäisyys maanpintaan tai muuhun kohteeseen
  • kasvillisuusindeksi
  • normaalivektori
  • ryhmänumero

Käsikeilauksen pisteillä on tyypillisesti seuraavia attribuutteja:

  • XYX
  • aikaleima
  • intensiteetti
  • RGB-värit, jos keilain varustettu kameralla

Jatkokäsittelyssä pisteelle syntyy mm. seuraavia attribuutteja

  • luokittelun tuloksena pisteluokkanumero
  • kävelyratanumero
  • pisteiden etäisyys maanpintaan tai muuhun kohteeseen
  • normaalivektori
  • ryhmänumero

Fotogrammetrisilla pisteillä on tyypillisesti seuraavat attribuutit:

  • XYX
  • RGB-värit

Jatkokäsittelyssä pisteelle syntyy mm. seuraavia attribuutteja

  • luokittelun tuloksena pisteluokkanumero
  • pisteiden etäisyys maanpintaan tai muuhun kohteeseen
  • kasvillisuusindeksi
  • normaalivektori
  • ryhmänumero

Maakeilauksen pisteillä on tyypillisesti seuraavat attribuutit:

  • XYZ
  • intensiteetti
  • RGB-värit, jos keilain varustettu kameralla

Jatkokäsittelyssä pisteille syntyy mm. seuraavia attribuutteja

  • luokittelun tuloksena pisteluokkanumero
  • keilausaseman numero, voi tulla laitteesta riippuen automaattisesti
  • normaalivektori
  • ryhmänumero

Eri menetelmillä tuotettujen pistepilvien sisältämiä attribuutteja voidaan käyttää sellaisenaan hyväksi ja uusien tietojen laskemiseen. Näitä taas voidaan edelleen käyttää luokittelussa parantamaan lopputulosta ja helpottamaan lopputuotteiden prosessointia. Attribuuttien perusteella pisteiden värjääminen auttaa paremmin havainnollistamaan pistepilveä interaktiivisessa työskentelyssä.

Yksittäisen laserpisteen sisältämä tietomäärä on verrattaen suuri. XYZ-koordinaatit ovat vain osa siitä tiedosta mitä tarvitaan prosessoitaessa aineistoa lopputuotteiden tuottamista varten. Minullakin on vielä aukkoja attribuuttitietämisessä, vaikka olen ollut pistepilvien kanssa tekemisessä yli kaksikymmentä vuotta. Kun saatte pistepilviainestoa, olkaa uteliaita. Katsokaa mitä se sisältää ja ottakaa siitä kaikki hyöty irti.

Kirjoittaja:

Tom Steffansson
Myynti-insinööri, Mobiilikartoitus

020 7510 649

tom.steffansson (at) geotrim.fi

Lisää artikkeleita Tompalta:

Laserkeilausohjelmistojen kehitystä seuraamassa – Tompan kokemuksia

Kirjoittaja: Tom Steffansson Koska laserkeilaus laitteineen ja ohjelmistoineen kehittyy koko ajan, tulee joskus muisteltua, mitä...

Lue blogi