Trimble MX9 -mobiilikartoitusjärjestelmä tutuksi – Osa 3: Trimble MX9-järjestelmän operointi

Kirjoittaja: Sakari Mäenpää

Tässä blogisarjassa tutustutaan Trimblen MX9-mobiilikartoitusjärjestelmään, sen ominaisuuksiin, operointiin ja käyttösovelluksiin. Sarjan kolmannessa osassa käsitellään tiedonkeruuta eli järjestelmän operointia TMI-ohjelmistolla.

Mobiilikartoituksen työnkulku tiedonkeruusta valmiiksi lopputuotteiksi on suoraviivainen prosessi, jossa hyödynnetään useita eri sovelluksia (Kuva 1). Tiedonkeruun jälkeen ajoneuvon liikerata prosessoidaan POSPac -ohjelmistossa hyödyntämällä jälkilaskentaa ja Trimnet-tukiasemadataa. Tämän jälkeen tuotetaan värjätty ja georeferoitu pistepilvi Trimble Business Centerissä. Tarpeista riippuen pistepilven jatkojalostamiseen ja varsinaisten lopputuotteiden tekemiseen on useita vaihtoehtoisia sovelluksia, joista yleisimpiä TBC:n lisäksi ovat Terrasolidin ja Trimble MX -ohjelmistot.

Kuva 1. Mobiilikartoituksen työnkulussa hyödynnetään useita eri ohjelmistoja.

Edellistä sukupolvea edustavan MX8 -järjestelmän operointi edellytti usean tietokoneen, ohjelman ja näytön järjestelmää, joka täytti ison osan auton tavaratilasta (Kuva 2). Trimble MX9 -järjestelmässä käytetään TMI (Trimble Mobile Imaging) -ohjelmistoa, joka on tuttu kuvapohjaisesta MX7-järjestelmästä ja on käytössä myös juuri esitellyssä MX50-järjestelmässä. Yhtenäinen käyttöliittymä suoraviivaistaa ja yksinkertaistaa eri järjestelmien käyttöä. Kun osaat yhden Trimblen mobiilikartoitusjärjestelmän käytön, on helppo siirtyä käyttämään toista järjestelmää, koska käyttölogiikka on kaikissa samanlainen. Nykyaikaisen mobiilikartoitusjärjestelmän operointi sujuu mittausalan ammattilaiselta lyhyen perehdytyksen jälkeen.

Kuva 2. Edellisen sukupolven MX8 vaati ison tietokonejärjestelmän (vasemmalla), mutta MX9:n operointiin riittää tabletti.

TMI on nykysuuntauksen mukaisesti selainpohjainen (Kuva 3), joten mitään ohjelmia ei tarvitse asentaa tietokoneelle, vaan sovellus on asennettu MX9:n kontrolliyksikköön. Käyttöliittymänä kontrolliyksikköön ja TMI-ohjelmistoon voidaan käyttää mitä tahansa selaimella varustettua päätelaitetta, joka tyypillisesti on kannettava tietokone tai tabletti. Hätätapauksessa myös älypuhelimella on mahdollista operoida järjestelmää, mutta tässä tapauksessa näytön koko asettaa omat haasteet käytettävyydelle. Vaikka MX9-järjestelmän operointi on helppoa, turvallinen käyttö vaatii kaksi henkilöä: kuljettaja keskittyy auton ajamiseen ja operaattori järjestelmän operointiin.

Kuva 3. TMI on helppokäyttöinen selainpohjainen sovellus MX9:n operointiin.

Käytettävä päätelaite liitetään kontrolliyksikköön joko wifi-yhteydellä tai ethernet-kaapelilla. Kontrolliyksikkö muodostaa kaksi wifi-verkkoa, joista toista käytetään päätelaiteyhteyteen ja toisen avulla kontrolliyksikkö voi muodostaa internetyhteyden hotspotin kautta. Internetyhteyttä tarvitaan esimerkiksi online-taustakarttojen käyttämiseen TMI:ssä.

Ennen varsinaisen mittaustehtävän aloittamista syötetään ajoneuvon perustiedot ja luodaan tarvittaessa tiedonkeruuta varten parametrit. Nämä ovat usein kertaluonteisia työvaiheita samaa ajoneuvoa käytettäessä ja samantyyppisissä projekteissa. Asennuksen yhteydessä on mitattu järjestelmän korkeus sekä mahdollisten lisälaitteiden (GAMS, DMI) asema järjestelmän 3D-koordinaatistossa. Nämä tiedot syötetään ohjelmistoon luomalla ajoneuvoprofiili, joka valitaan tiedonkeruun alussa. Tiedonkeruussa on mahdollista käyttää ennalta luotuja vakioprofiileja tai luoda omat mittausasetukset kameroille ja laserkeilaimille (Kuva 4).

Kuva 4. Asetuksissa voidaan määrittää kameroiden kuvanottoväli ja laserkeilaimien mittausasetukset.

Kun asetukset on syötetty, luodaan mittaussessio antamalla sille nimi ja valitsemalla ajoneuvoprofiili ja käytettävät mittausasetukset. Mittaussession alussa paikannusjärjestelmä ei ole alustettu (Kuva 5) ja tämä edellyttää tyypillisesti muutaman minuutin ajoa hyvässä GNSS-ympäristössä. Ajoon sisällytetään ajomanöövereitä, kuten voimakkaampia kiihdytyksiä, jarrutuksia sekä käännöksiä, jotka nopeuttavat alustuksen saamista. Paikannustiedon tallennus käynnistyy automaattisesti mittaussession luonnin yhteydessä, kunhan riittävä määrä satelliitteja on mukana ratkaisussa.

Kuva 5. Mittaussession alussa GNSS/IMU-järjestelmä ei ole alustettu, mikä ilmenee punaisena navigointikuvakkeena sivupalkissa oikealla.

Kun järjestelmä on alustettu, muuttuu navigointikuvake vihreäksi ja sitä painamalla saa tarkempaa tietoa paikannuksen tilasta (Kuva 6). Navigointikuvake pysyy vihreänä, kunhan kaikki neljä indikaattoria ovat vihreällä alueella. Järjestelmä on nyt valmis sensoritiedon tallennukseen.

Kuva 6. Navigointikuvake on vihreä ja järjestelmä on valmis tiedon tallennukseen. Oikean alakulman tallennuspainikkeella käynnistyy sensoridatan tallennus.

Kun järjestelmä on alustettu ja valmis tiedonkeruuseen, operaattori käynnistää ja lopettaa sensoridatan tallennuksen painamalla oikean alakulman tallennuspainiketta (Kuva 7). Sijaintitiedon tallennus jatkuu automaattisesti niin kauan kuin järjestelmä on käynnissä eikä operaattori pysty siihen vaikuttamaan. Tallennus kannattaa jakaa loogisiin osiin eli runeihin (run) esimerkiksi kaduittain tai alueittain, mikä helpottaa datan jatkokäsittelyä. TMI-ohjelmiston karttaikkunassa kulku-ura näkyy paksulla viivalla, jos sensoridatan tallennus on ollut käytössä.

Tiedonkeruun aikana operaattori voi tarkkailla paikannustiedon lisäksi sensoridataa eli kameroiden kuvia tai laserkeilaimien profiileja ja varmistaa onnistuneen tiedonkeruun ja kuvien oikean valotuksen. Navigointikuvake voi hetkellisesti muuttua vihreästä oranssiksi, mutta tämä ei aiheuta toimenpiteitä tiedonkeruussa. Jos järjestelmää operoidaan huonossa GNSS-ympäristössä, esimerkiksi suurempien kaupunkien keskustojen katukuiluissa tai puuston varjostamilla alueilla, kannattaa tiedonkeruun aikana käydä säännöllisesti hyvässä GNSS-ympäristössä hakemassa hyvä GNSS-ratkaisu.

Tiedonkeruun aikana operaattorilla on mahdollista syöttää kommentteja, jotka tallentuvat aikaleimattuna mittaustietokantaan. Esimerkiksi tiedonkeruun aikana olosuhteissa tapahtuneet muutokset tai muut huomionarvoiset tapahtumat voidaan näin tallentaa tiedoksi aineiston käsittelijälle. Session aikana, tallennusjaksojen välissä, on myös mahdollista muuttaa mittausasetuksia, joten samaan sessioon on mahdollista tallentaa eri parametreilla kerättyä tietoa. Järjestelmän alustusta ei näin tarvitse tehdä uudestaan.

Kuva 7. Sensoridatan tallennus on päällä, joten oikean alakulman tallennuspainike on punainen ja karttaikkunassa ajorata piirretään paksulla viivalla. Operoinnin aikana operaattori voi tarkastella sensoreiden tuottamaa raakadataa.

Kun tiedonkeruu on valmis, lopetetaan mittaussessio ja ajetaan järjestelmä hallitusti alas ennen virran sammuttamista. Kaikki tieto mittaussession aikana on tallentunut kontrolliyksikön (Kuva 8) kahdelle irrotettavalle SSD-levylle. Jos järjestelmään kuuluu varalevyt, voidaan nämä vaihtaa tilalle ja jatkaa tiedonkeruuta keskeytyksettä ja aloittaa datan käsittely.

Kuva 8. Mittausaineisto tallentuu kontrolliyksikön kahdelle SSD-levylle (5). Levyt voidaan irrottaa ja vaihtaa uusiin, jolloin aineiston käsittely voidaan aloittaa ja jatkaa tiedonkeruuta.

Blogisarjan seuraavassa osassa käsitellään kulku-uran laskentaa ja pistepilviaineiston tuottamista.

Trimble MX9 -mobiilikartoitusjärjestelmä tutuksi – Osa 2: Trimble MX9-järjestelmän asentaminen

Trimble MX9 asennettuna auton katolle

Tässä blogisarjassa tutustutaan Trimblen MX9-mobiilikartoitusjärjestelmään, sen ominaisuuksiin, operointiin ja käyttösovelluksiin. Sarjan toisessa osassa käsitellään MX9:n asentaminen.

MX9-järjestelmän käyttösovellukset liittyvät valtaosiltaan liikenneväylillä tapahtuvaan tiedonkeruuseen, joten tyypillisiä asennusalustoja ovat erilaiset maanteillä ja rautateillä liikkuvat ajoneuvot. Vesiväylillä myös veneet ja muut vesistössä liikkuvat kulkuneuvot tulevat kyseeseen. Joustavan modulaarisen rakenteen ansiosta MX9 voidaan nopeasti asentaa erilaisiin ajoneuvoihin käyttösovelluksen mukaan.

Kahdelta henkilöltä menee MX9:n asentamiseen puolisen tuntia. Nopeutettu video näyttää vaiheet.

Ajoneuvon ominaisuuksien osalta ei ole erityisiä vaatimuksia, ainoastaan asennuskorkeuden on oltava riittävä ja sensoriyksikkö on pystyttävä asentamaan siten, etteivät ajoneuvon rakenteet estä laserkeilaimien ja kameroiden näkemää. Pystyperäiset ajoneuvot soveltuvat parhaiten käyttötarkoitukseen, joten useimmat tila-autot, katumaasturit tai pakettiautot ovat mahdollisia ajoneuvoratkaisuja, joissain tapauksissa myös farmariautot. Trimbleltä on saatavana Excel-laskuri, jonka avulla voi varmistaa ajoneuvon soveltuvuuden mobiilikartoitukseen.

Trimble MX9 ja Trimble MX8
Trimble MX9 asennettuna

Kuva 1. Kolme ajoneuvovaihtoehtoa MX9-järjestelmälle: farmariauto, pakettiauto/pikkubussi ja katumaasturi. Pikkubussin katolla vanhemman sukupolven MX8-järjestelmä.

Korkeudesta on hyötyä

Tiedonkeruun kannalta on eduksi, jos järjestelmä pystytään asentamaan hiukan korkeammalle. Tällöin laserkeilaimien kantama on pidempi ja paremmassa kulmassa tienpintaan nähden sekä kameroiden, varsinkin tien pintaa kuvaavan viistokameran kuva-ala on suurempi. Takakameran riittävän kuva-alan kannalta auton korkeuden on hyvä olla minimissään 1.6 m. Laserkeilaimien minimi mittausetäisyys on puolestaan 1.2 m, joka on ehdoton minimikorkeus asennukselle.

Asennustelineen sijainti

Järjestelmän asennuksen ajallisesti aikaa vievin vaihe on asennustelineen kiinnittäminen auton taakkatelineisiin. Asennustelineen ansiosta itse sensoriyksikkö on nopeasti asennettavissa paikalleen työpäivän alussa ja poistettavissa asennustelineestä helposti työpäivän jälkeen. Asennuksen kannalta näppärin on kattokaiteilla varustettu ajoneuvo, johon taakkatelineet voidaan sijoittaa vapaasti haluttuihin kohtiin, jolloin asennustelineen kiinnityskohtia ei tarvitse säätää. Kattokaiteen ja taakkatelineen on oltava sellainen, että se kestää katolle tulevan kokonaisuuden yhteispainon, 55 kg.

Rautatiesovelluksissa ajoneuvona voidaan käyttää kiskopyörillä varustettua autoa, jolloin asennus ei olennaisesti poikkea normaalista ajoneuvoasennuksesta. Toinen yleinen vaihtoehto on Tka-sarjan ratakuorma-auto. Tässä tapauksessa asennustelineelle on rakennettava sopiva kiinnitysteline ja sensoriyksikkö tulee yleensä ”väärinpäin” eli keulaan siten, että sitä ikään kuin työnnetään eteenpäin.

Trimble MX9:n asentaminen: asennusteline
Trimble MX9:n asentaminen: asennusteline

Kuva 2. Asennusteline kiinnitettynä auton taakkatelineisiin ja Tka-ratakuorma-auton keulaan.

Sensoriyksikön asentaminen

Asennustelineen kiinnityksen jälkeen voidaan sensoriyksikkö nostaa paikoilleen. Yksikkö painaa 37 kg ja paikoilleen nostaminen vaatii kaksi henkilöä. Nostamista varten sensoriyksikkö on varustettu tukevilla kahvoilla, joiden avulla nostaminen on helppoa ja turvallista. Sensoriyksikkö lukittuu automaattisesti paikalleen asennustelineeseen, mutta kiinnitys varmistetaan lukitusruuveilla.

Trimble MX9:n asentaminen: sensoriyksikkö

Kuva 3. Sensoriyksikön nosto asennustelineeseen vaatii kaksi henkilöä. Kiinnitys varmistetaan lukitusruuveilla.

Trimble MX9:n asentaminen: sensoriyksikön lukitus

Muiden komponenttien sijoittaminen

Järjestelmän muut komponentit eli kontrolliyksikkö ja virtayksikkö asennetaan yleensä ajoneuvon sisätiloihin, esimerkiksi takapenkille tai tavaratilaan. Sijoittelu on käytännössä vapaata ja ainoa huomioitava seikka on kaapelien pituudet: sensoriyksikön ja kontrolliyksikön välisen kaapelin pituus on viisi metriä ja kontrolliyksikön ja virtayksikön välisen kaapelin kolme metriä. Takapenkkiasennuksen etuna on se, että operaattori näkee helposti kontrolliyksikön tilan ja pääsee tarvittaessa käynnistämään ja sammuttamaan yksikön tai vaihtamaan kiintolevyt.

Trimble MX9:n asentaminen: kontrolliyksikkö
Trimble MX9:n asentaminen: kontrolliyksikkö

Kuva 4. Kontrolliyksikkö asennetaan yleensä auton tavaratilaan tai takapenkille.

Virtayksikkö liitetään kontrolliyksikköön ja virtalähteeseen. Väliaikaisissa MX9:n asennuksissa ja lyhyissä projekteissa on järkevää käyttää virtalähteenä akkua, joka huomattavasti nopeuttaa asennusta ja antaa joustavuutta operointiin. Järjestelmä toimii 12 VDC jännitteellä ja kytkemällä tarvittaessa useampi akku rinnan, saadaan riittävän pitkä toimintakapasiteetti useimpiin kartoitussessioihin.

Trimble MX9:n asentaminen: virtayksikkö
Trimble MX9:n asentaminen: virtayksikkö

Kuva 5. Virtayksikkö liitetään kontrolliyksikköön ja virtalähteeseen. Kuvan 110 Ah akku antaa MX9- järjestelmälle noin viiden tunnin toiminta-ajan.

GAMS-antenni

Väliaikaisissa asennuksissa voidaan käyttää GAMS-lisäantennia, joka nopeuttaa järjestelmän alustamista mittauksen alussa, mutta ajoneuvon renkaaseen kiinnitettävän DMI:n asentaminen on mielekästä lähinnä kiinteissä asennuksissa tai pidemmissä projekteissa. GAMS-antenni voidaan asentaa nopeasti magneettikiinnityksen avulla auton katolle tai kiinnittää kiinteän tangon avulla asennustelineeseen, jolloin asema asennustelineen suhteen säilyy aina vakiona.

Trimble MX9:n asentaminen: antenni

Kuva 6. GAMS-antenni asennettuna asennustelineeseen kiinnitettyyn tankoon, jolloin asennusparametrit pysyvät vakiona.

Trimble MX9 asentaminen: asennusparametrit ja ajoneuvoprofiili

Viimeinen vaihe asennuksessa on ajoneuvokohtaisten asennusparametrien mittaaminen ja ajoneuvoprofiilin luominen. Asennustelineessä on referenssipiste, jonka suhteen määritetään telineen korkeus maanpinnasta sekä lisälaitteiden, GAMS ja DMI, asema järjestelmän 3D-referenssi­koordi­naatistossa (kuva 7). Referenssipisteestä x-akseli kasvaa ajoneuvon kulkusuuntaan, y-akseli siitä kohtisuoraan oikealle ja z-akseli alaspäin.

Trimble MX9:n asentaminen: referenssikoordinaatisto

Kuva 7. MX9-järjestelmän referenssikoordinaatisto.

Mittaamiseen voidaan käyttää mittanauhaa ja vatupassia. Mikäli GAMS-antennia halutaan käyttää POSPac-jälkilaskennassa suuntareferenssinä, on mittaus syytä tehdä millitarkasti esim. takymetrillä.

Trimble MX9:n asentaminen: parametrit

Kuva 8. Järjestelmän nollapiste, josta mitataan asennuskorkeus maan pintaan sekä lisälaitteiden sijainti referenssikoordinaatistossa.

Parin harjoituskerran jälkeen kahdelta henkilöltä menee MX9:n asentamiseen puolisen tuntia alkaen taakkatelineiden asentamisesta ja päätyen ajoneuvoprofiilin luomiseen. Useamman päivän mittausprojekteissa, kun asennusteline on paikoillaan, järjestelmä on käyttökunnossa huomattavasi lyhyemmässä ajassa.

Blogisarjan seuraavassa osassa aiheena on Trimble MX9-järjestelmän operointi.

Trimble MX9 -mobiilikartoitusjärjestelmä tutuksi – Osa 1: Trimble MX9 -järjestelmä ja sen ominaisuudet

Trimble MX9-laite

Geotrim Oy:n liiketoimintaideaan on aina kuulunut uusien tehokkaiden mittausmenetelmien tuominen Suomeen ja järjestelmien matalan kynnyksen käytön mahdollistaminen asiakkaille. Vuonna 2011 hankittu Trimble MX8 -mobiilikartoitusjärjestelmä oli Suomen ensimmäisiä kaupallisia ajoneuvokartoitusjärjestelmiä ja yksi tämän filosofian ilmentymistä. Kesän 2020 kynnyksellä saapui tuotevalikoimaan MX8:n seuraaja, Trimble MX9, joka tehokkuudellaan ja helppokäyttöisyydellään edustaa uutta sukupolvea.

Trimble MX9 ja Trimble MX8

Kuva. Uusi ja vanha sukupolvi rinnakkan. MX9 ja MX8.

Kuten kaikki Geotrimin tuotevalikoimassa olevat uudet teknologiat, myös Trimble MX9 on asiakkaiden käytettävissä vaihtoehtoisilla tavoilla: käyttökoulutuksen jälkeen voit itse toteuttaa tiedonkeruuprojektin ja siihen liittyvän prosessoinnin omatoimisesti tai voit hankkia yhteistyökumppanimme kautta ‘avaimet käteen’ -paketin tiedonkeruusta valmiiksi lopputuotteiksi.

Tässä blogisarjassa tutustutaan MX9-järjestelmään, tiedonkeruuprosessiin, aineiston prosessointiin, lopputuotteisiin ja järjestelmän käyttösovelluksiin. Tässä ensimmäisessä osassa tutustutaan itse järjestelmään ja sen ominaisuuksiin.

Mobiilikartoitus on geospatiaalisen datan tiedonkeruuprosessi, jossa tietoa kerätään liikkuvassa ajoneuvossa olevilla sensoreilla. Trimble MX9:n ydin on kompakti sensoriyksikkö, johon kaikki järjestelmään kuuluvat sensorit on asennettu. MX9:n sensoriyksiköstä on saatavana neljä vaihtoehtoista kokoonpanoa, joista Geotrimille hankittu järjestelmä edustaa ominaisuuksiltaan laajinta.

Sensoriyksikkö

Sensoriyksikössä on kaksi Rieglin laserkeilainta, joiden keilaustaajuus on säädettävissä välillä 300 kHz…1 MHz eli maksimissaan koko järjestelmä tuottaa kaksi miljoonaa pistettä sekunnissa. Keilaimien pyörimisnopeutta voidaan puolestaan säätää 20 hertsistä aina 250 hertsiin. Pyörimisnopeus vaikuttaa linjaväliin, jonka keilain mitattavaan pintaan, esim. tienpintaan, muodostaa ja 250 Hz taajuus 40 km/h ajonopeudella tuottaa 4 cm linjavälin. Keilaimien mittaustarkkuudeksi on speksattu 5 mm ja kohinatasoksi 3 mm.

Trimble MX9 -mobiilikartoitusjärjestelmä

Kuva. MX9:n sensoriyksikkö asennustelineessään.

Näiden mittausparametrien avulla MX9:n tuottaman pistepilven pistetiheys on joustavasti valittavissa käyttösovelluksen mukaan. Koska pistemäärä vaikuttaa prosessointiaikoihin ja tallennettavan datan määrään, kannattaa mittausaseukset optimoida käyttötarpeen mukaan. Maksimiasetuksilla ja 40 km/h ajonopeudella saavutetaan yli 10000 pistettä/m2 pistetiheys, joka voi olla moniin käyttösovelluksiin tarpeettoman suuri.

Kuva. Mittausparametrien säädöllä pystyy vaikuttamaan pistetiheyteen.

Kamerat

Kamerajärjestelmän muodostavat 360° panoraamakamera sekä kolme viistokameraa. Panoraamakamera tuottaa kuuden kameran avulla aineiston, joka kattaa 90% pallopinnasta ja sen pääasiallinen käyttötarkoitus on pistepilven värjäys. Normaaliasennuksessa viistokameroista kaksi osoittaa etuviistoon ja kolmas taakse ja alaviistoon. Viistokamerat tuottavat visuaalista kuva-aineistoa, jotka helpottavat pistepilven tulkintaa kuten liikennemerkkien lisäkilpien tekstien lukemista tai tien pinnan kunnon arviointia. Kuva-aineistoa voidaan myös hyödyntää fotogrammetriseen 3D-mittaukseen.

Paikannus

Laserkeilaimet ja kamerat pitää myös paikantaa, jotta koordinaattitiedon tuottaminen on mahdollista. Paikannusjärjestelmän perustan muodostaa Trimblen tytäryhtiön Applanixin valmistama AP60 GNSS/IMU -järjestelmä. Applanixin järjestelmät ovat alan de-facto -standardeja ja AP60 on parasta mitä valmistajalla on tarjota mobiilikartoitusjärjestelmiin. AP60 ei ainoastaan paikanna sensoriyksikön sijaintia senttitarkasti, se myös määrittää sensorien asennot ja orientoinnin ja näiden tietojen avulla pistepilven ja kuva-aineiston suora georeferointi haluttuun koordinaattijärjestelmään on mahdollista.

Edellä mainittu sensoriyksikkö asennetaan asennustelineeseen pikalukituksella, joka mahdollistaa nopean päivittäisen kaluston käyttökuntoon saattamisen ja purkamisen työpäivän jälkeen. Asennusteline puolestaan kiinnitetään vakiomallisiin ajoneuvon kattotelineisiin.

Lisävarusteista

Sensoriyksikköä voidaan täydentää kahdella lisävarusteella. Ne eivät ole edellytyksenä järjestelmän käytölle, mutta monessa tapauksessa parantavat lopputulosta tai nopeuttavat prosessia. GAMS (GNSS Azimuth Measurement System) on sensoriyksikköön liitettävä toinen GNSS-antenni, joka nopeuttaa navigointijärjestelmän alustamista. Sen avulla AP60 määrittää ajoneuvon orientoinnin nopeammin kuin käyttämällä pelkästään sensoriyksikössä olevaa GNSS/IMU-järjestelmää. GAMS-antenni voidaan nopeasti kiinnittää magneettikiinnityksellä ajoneuvon kattoon ja sen etäisyys itse primääriantenniin on hyvä olla vähintään parin metrin luokkaa.

Toinen erillinen lisävaruste on DMI (Distance Measurement Indicator), joka asennetaan ajoneuvon renkaaseen. DMI tuottaa tietoa ajoneuvon nopeudesta ja ylipäätään siitä ollaanko paikallaan vai liikkeessä ja tätä tietoa käytetään jälkiprosessoinnissa hyväksi paikannustarkkuuden parantamiseen. DMI:stä on erityisesti hyötyä kun toimitaan ympäristössä, jossa satellittinäkyvyyden kanssa on haasteita.

Kuva. Lisävarusteena saatavat GAMS ja DMI parantavat mittaustarkkuutta.

Sensoriyksikkö liitetään kaapelilla kontrolliyksikköön, joka sijoitetaan ajoneuvon sisätiloihin. Kontrolliyksikkö on itseasiassa tietokone ilman näyttöä ja siihen sisältyy kaksi kappaletta kahden teratavun SSD-kiintolevyä, jotka tallentavat sensorien ja paikannusjärjestelmän dataa. SSD-levyt ovat nopeasti irrotettavissa ja vaihdettavissa toisiin, joten levyjen täyttyminen ei keskeytä tiedonkeruuprosessia.

Kontrolliyksikössä on kaksi wifi-verkkoa, joilla toisella voidaan muodostaa langaton yhteys operoinnissa käytettävään tietokoneeseen ja toisella mobiiliverkon kautta internetiin. Toki yksiköstä löytyvät liitännät myös langallisille yhteyksille. Kontrolliyksikön sisälle on myös asennettuna järjestelmän operointiin käytettävä TMI (Trimble Mobile Imaging) -ohjelmisto, johon käyttöliittymänä toimii mikä tahansa tietokone tai tabletti ja siinä oleva selain. Järjestelmän operointi ei siis edellytä mitään tietokoneelle asennettavaa ohjelmistoa.

Trimble MX9:n Control Unit

Kuva. MX9:n kontrolliyksikkö on tietokone ilman näyttöä.

Kolmas järjestelmään liittyvä yksikkö on virtayksikkö, joka liitetään kontrolliyksikköön ja ajoneuvon virtajärjestelmään. Jos operointiin käytetään aina samaa ajoneuvoa, on järkevää tehdä virransyöttöä varten kiinteä asennus, mutta väliaikainen käyttö onnistuu myös riittävän kapasiteetin omaavalla akulla. MX9:n virrankulutus on 20Ah eli esim. 100Ah akulla saadaan viiden tunnin toiminta-aika.

Sarjan seuraavassa osassa tutustutaan järjestelmän asentamiseen.

Trimble MX9 -tuotesivu

Kirjoittaja

Sakari Mäenpää
Myyntipäällikkö

0207 510 622
sakari.maenpaa (at) geotrim.fi

Mobiilikartoitus

Mobiilikartoitusjärjestelmät

Trimble MX90

Mobiilikartoitusjärjestelmä


Trimble MX50

Mobiilikartoitusjärjestelmä


Trimble MX9

Mobiilikartoitusjärjestelmä


Trimble MX7

Mobiilikartoitusjärjestelmä


Mobiilikartoitus on ajoneuvoon kiinnitettävällä laitteistolla tapahtuvaa mittausta. Järjestelmään voi sisältyä laserkeilausta ja/tai kuvausta sekä paikannusjärjestelmä.

Trimblen mobiilikartoitus on nopea ja tehokas tapa kerätä kattavaa geospatiaalista tietoa ympäristöstä.






Mikä on tavoitteesi?

Mobiilikartoitus soveltuu erityisesti väylämäisten ympäristöjen, kuten eri tasoisten teiden, katukuilujen ja rautateiden kartoitukseen. Saat kerralla aineiston, joka kattaa kaiken tarvittavan. Aina ei ole tarvetta käyttää järeintä tiedonkeruumenetelmää kevyeen sovellukseen. Joskus tarvitaan sekä pistepilveä, että kuvia, joskus taas riittää toinen niistä. Trimblen mobiilikartoitusjärjestelmissä on ratkaisut kaikkiin eri sovelluksiin ja vaatimustasoihin.


Mobiilikartoituksen lopputuotteita:

Korkean tarkkuustason sovelluksiin Trimble MX9 ja Trimble MX50 ja Trimble MX90, esim.

  • päällystemittaukset
  • koneohjausmallit
  • lähtötieto- ja toteumamallit
  • laaduntarkkailumittaukset jne

Mittatarkkoihin kuviin perustuviin mittauksiin ja analyyseihin Trimble MX7, esim.

  • omaisuuden hallinnan tehtävät
  • GIS-tason tiedonkeruu


Käyttökohteita

Mobiilikartoitusta käytetään usein väylämäisissä kohteissa koko väylän elinkaaren ajan aina suunnittelusta rakentamisen kautta ylläpitoon.

Suunnittelu

Kerää lähtötiedot erilaisia suunnittelutehtäviä varten. Yleisimpiä suunnittelutehtäviä, joihin voit hyödyntää mobiilikartoitusta:

  • Tien tai kadun geometrian uudistaminen
  • Uusien liittymien tai kaistojen rakentaminen tieympäristöön
  • Väyläympäristön telematiikkasuunnittelu
  • Päällysteoptimoinnin suunnittelu
  • Erikoiskuljetusten reittisuunnittelu
  • Kaavoituksen, maisemoinnin ja turvarakenteiden suunnittelu


Mobiilikartoitus, tieprofiilit

Kuva ja pistepilvi mobiilikartoittamalla

Mobiilikartoitus, törmäystesti

Rakentaminen

Dokumentoi työmaan tila tai eri rakentamisen vaiheet mobiilikartoituksen avulla:

  • Työvaiheiden toteuman dokumentointi ja seuranta
  • Massojen laskenta
  • As-built mallien kerääminen
  • Toteuman ja suunnitelman vertailu
  • Työmaan turvallisuuden tarkkailu ja dokumentointi


Mobiilikartoitus, työmaan dokumentointi

Ylläpito ja omaisuuden hallinta

Mobiilikartoitus on tehokas työkalu korjausvelan vähentämiseen. Tie- ja katuverkostojen ylläpitoon käytettävät rahat voidaan kohdentaa eniten sitä tarvitseville tieosuuksille mobiilikartoituksen avulla:

  • Väylien kuivatuksen, pintakunnon ja rakenteiden suorituskyvyn analysointi
  • Väyläomaisuuden, kuten eri varusteiden määrän ja kunnon inventointi
  • Ylläpitotoimenpiteiden suunnittelu ja päätöksenteon tukeminen


Muut käyttökohteet

Mobiilikartoituksella on myös lukuisia käyttökohteita perinteisten sovellusten ulkopuolella, kuten:

  • Kaupunkien 3D-mallinnus
  • Kaivosympäristöjen mallinnus
  • Ulottumien ja alistuskorkeuksien mittaus
  • Sähköverkkojen mallinnus
  • Kaupunkiympäristön dokumentointi esimerkiksi verotus- ja lupa-asioiden hallintaan


Mobiilikartoitus, alituskorkeuksien mittaus


Mobiilikartoitusohjelmistot

Trimble MX Software

Ohjelmisto


Applanix POSPac

Ohjelmisto


Trimble Business Center

Toimisto-ohjelmisto

Yhteensopiva: Access / TSC5 / TSC7 / T10 / R12 / R12i / R780 / R580 / SX12 / X7 / X9 / X12 / MX7 / MX50 / MX9


Videoita

Trimble MX90: Laajoihin laserkeilaus- ja kartoitusprojekteihin. Field-to-finish -mobiilikartoitusjärjestelmä


Trimble MX50: Helposti operoitava mobiilikartoitusjärjestelmä pistepilvien ja kuva-aineiston tuotantoon


Trimble MX9: Monipuolinen mobiilikartoitusjärjetelmä


Trimble MX7 – mobiilikartoitusjärjestelmä


Kysy meiltä mobiilikartoituksesta

Sakari Mäenpää
Myyntipäällikkö

0207 510 622
sakari.maenpaa (at) geotrim.fi


Tom Steffansson
Myynti-insinööri, Mobiilikartoitus

020 7510 649

tom.steffansson (at) geotrim.fi


Lähetä viesti